Problem Analysis #1

16.46s
3,918 toks
Problem Statement

Evaluate the integral

I=P(x)eix(x20569i)8dx,I = \int_{-\infty}^{\infty} \frac{P(x)e^{ix}}{\left(x-\frac{205}{69}i\right)^{8}}\,dx,

where

P(x)=x714ix6+(8560i)x5(240+210i)x4+(420840i)x3(560+1680i)x2+(13442688i)x+3840.\begin{aligned} P(x)=\,&x^{7}-14ix^{6}+(85-60i)x^{5}-(240+210i)x^{4} \\ &+(420-840i)x^{3}-(560+1680i)x^{2} \\ &+(1344-2688i)x+3840. \end{aligned}

If I=a+biI=a+bi, compute 10a+b\lfloor 10a \rfloor + \lfloor b \rfloor.

Ground Truth
9
Execution Trace
Reasoning Process

[THOUGHT] Use the residue theorem with a contour in the upper half-plane. The integrand has an 8th-order pole at (z_0 = \frac{205}{69}i) in the upper half-plane and decays on the semicircle due to (e^{iz}). Thus, [ I = \int_{-\infty}^{\infty} \frac{P(x)e^{ix}}{(x-\frac{205}{69}i)^8}dx = 2\pi i \cdot \text{Res}\left(\frac{P(z)e^{iz}}{(z-\frac{205}{69}i)^8}, z=z_0\right). ] For an order-8 pole, [ \text{Res} = \frac{1}{7!}\frac{d^7}{dz^7}\left[P(z)e^{iz}\right]_{z=z_0}. ] Compute this with sympy, then get real and imaginary parts of (I), then (\lfloor 10a \rfloor + \lfloor b \rfloor). [/THOUGHT] [PYTHON] import sympy as sp

Define symbol and imaginary unit

z = sp.symbols('z') I = sp.I

Define polynomial P(z)

P = (z7 - 14Iz6 + (85-60*I)z**5 - (240+210I)z**4 + (420-840I)z**3 - (560+1680I)z**2 + (1344-2688I)*z + 3840)

Define z0

z0 = 205*I/69

Define the function whose 7th derivative we need

f = Psp.exp(Iz)

Compute 7th derivative

d7 = sp.diff(f, z, 7)

Residue at z0 for 8th-order pole

res = d7.subs(z, z0) / sp.factorial(7)

Integral I via residue theorem

integral = 2sp.piI*res

Simplify

integral_simplified = sp.simplify(integral)

Get real and imaginary parts with high precision

a = sp.re(integral_simplified) b = sp.im(integral_simplified)

a_n = sp.N(a, 50) b_n = sp.N(b, 50)

print("Integral I =", integral_simplified) print("a (real part) ~", a_n) print("b (imag part) ~", b_n)

Compute the requested quantity

val = int(sp.floor(10*a_n) + sp.floor(b_n)) print("Result =", val)

Tool Output
[PYTHON OUTPUT] Integral I = pi*(-43995614709051274 + 42999653639106551*I)*(1 - 2*I)*exp(-205/69)/9382405098262140 a (real part) ~ 0.72082188475747114706486089854580218584155454034402 b (imag part) ~ 2.2479236808971603149453933799769176125301093642796 Result = 9 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Using the residue computation from the Python output, the integral’s real and imaginary parts are (a \approx 0.7208) and (b \approx 2.2479). Thus (\lfloor 10a \rfloor = \lfloor 7.208...\rfloor = 7) and (\lfloor b \rfloor = \lfloor 2.247...\rfloor = 2), giving (7+2=9). [ \boxed{9} ]

Final Model Output
9

Comparative Analysis (P1) (Average across runs)

Avg Time Taken

Gemini-3-Pro-Preview
178.5
Deepseek-V3.2
61.4
Grok-4.1-fast
44.2
Claude-Opus-4.5
19.8
GPT-5.1 (high)
14.5

Avg Token Usage

Gemini-3-Pro-Preview
32384.0
Grok-4.1-fast
10096.3
Deepseek-V3.2
6802.0
Claude-Opus-4.5
4402.7
GPT-5.1 (high)
3839.3