Problem Analysis #4

32.43s
5,162 toks
Problem Statement

Consider a function f(t)f(t) of a real variable tt, where f(t)|f(t)| and f(t)2|f(t)|^2 are integrable. Let F(ω)=F[f(t)]F(\omega) = \mathcal{F}[f(t)] denote the Fourier transform of f(t)f(t):F(ω)=F[f(t)]=f(t)eiωtdt,F(\omega) = \mathcal{F}[f(t)]= \int_{-\infty}^{\infty} f(t)\,e^{-i\omega t}\,dt,where ω\omega is a real number and ii is the imaginary unit. Assume the following identity holds:F(ω)2dω=2πf(t)2dt.\int_{-\infty}^{\infty} |F(\omega)|^2\,d\omega= 2\pi \int_{-\infty}^{\infty} |f(t)|^2\,dt.Let Rf(τ)R_f(\tau) denote the autocorrelation function of f(t)f(t):Rf(τ)=f(t)f(tτ)dt,R_f(\tau) = \int_{-\infty}^{\infty} f(t)\,f(t-\tau)\,dt,where τ\tau is a real number.\subsection*{I.}Consider the case where f(t)f(t) is defined byf(t)={cos(at)(tπ2a),0(t>π2a),f(t) =\begin{cases}\cos(at) & (|t| \le \dfrac{\pi}{2a}),\\[1mm]0 & (|t| > \dfrac{\pi}{2a}),\end{cases}where aa is a positive real constant. Find the following:

  • [(1)] The Fourier transform F(ω)F(\omega).

  • [(2)] The autocorrelation function Rf(τ)R_f(\tau).

  • [(3)] The Fourier transform F[Rf(τ)]\mathcal{F}[R_f(\tau)]. \subsection*{II.}Using the results of I, evaluate the following integrals:

  • [(1)] cos2 ⁣(πx2)(x21)2dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^2\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^2}\,dx,

  • [(2)] cos4 ⁣(πx2)(x21)4dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^4\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^4}\,dx. Let AA denote the value obtained in {\rm II(1)}, and let BB denote the value obtained in {\rm II(2)}. In addition, for the case a=1a=1 in I, let F(0)F(0) be the value of the Fourier transform in {\rm I(1)} at ω=0\omega=0.DefineK=37(F(0))4+999(96B16A230A)+123456.\mathcal{K}= 37\bigl(F(0)\bigr)^4+ 999\bigl(96B - 16A^2 - 30A\bigr)+ 123456.Compute the integer K\mathcal{K}.\

Ground Truth
124048
Execution Trace
Reasoning Process
import scipy.integrate as spi
import numpy as np

# Part II Integral 1
def integrand_a(x):
    return np.cos((np.pi * x / 2))**2 / ((x**2 - 1)**2 + 1e-20)

A = spi.quad(integrand_a, -100, 100)[0]

# Part II Integral 2
def integrand_b(x):
    return np.cos((np.pi * x / 2))**4 / ((x**2 - 1)**4 + 1e-40)

B = spi.quad(integrand_b, -100, 100)[0]

# part I with a=1, F(0) = 2 (as derived above)

K = 37 * (2**4) + 999 * (96*B - 16*A**2 - 30*A) + 123456
print(K)
Tool Output
[PYTHON OUTPUT] 124048.03629506372 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT]
Python calculates K ≈124048.0363, close to integer 124048. Rounding to nearest integer.
[/THOUGHT]

\boxed{124048}[THOUGHT]
Python calculates K ≈124048.0363, close to integer 124048. Rounding to nearest integer.
[/THOUGHT]

\boxed{124048}

Final Model Output
124048

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
414.5
Gemini-3-Pro-Preview
235.9
Deepseek-V3.2
172.0
Solar-Pro-2 (31B)(high)
168.4
Llama-VARCO-8B-Instruct
128.4
A.X-4.0 (72B)
124.6
Grok-4.1-fast
63.1
Claude-Opus-4.5
52.5
HCX-007(high)
32.4
EXAONE-4.0.1-32B (high)
9.1

Avg Token Usage

Solar-Pro-2 (31B)(high)
22565.0
GPT-5.1 (high)
18561.0
Deepseek-V3.2
17612.0
Grok-4.1-fast
13781.0
Gemini-3-Pro-Preview
12183.0
Claude-Opus-4.5
9408.0
A.X-4.0 (72B)
9126.0
Llama-VARCO-8B-Instruct
8388.0
EXAONE-4.0.1-32B (high)
5657.0
HCX-007(high)
5162.0