Consider the curve given in polar coordinates bywith the origin as the pole and the positive –axis as the initial line.
- [(1)] Compute the area of the region enclosed by the curve .
- [(2)] At the point find the slope of the tangent line to the curve in the –coordinate plane. Let be the value obtained in part (1). Express the answer from part (2) in the formwhere and are integers, and let those integers be the definitions of and . Using these values of , , and , compute\
[THOUGHT] I need to solve the problem step by step.
First, part (1): Compute the area enclosed by the curve ( r = 2 + \cos\theta ) for ( 0 \le \theta \le 2\pi ).
In polar coordinates, the area enclosed by a curve ( r(\theta) ) from ( \theta = \alpha ) to ( \theta = \beta ) is given by: [ A = \frac{1}{2} \int_{\alpha}^{\beta} r(\theta)^2 , d\theta. ] Here, ( r(\theta) = 2 + \cos\theta ), and the curve is traced once as ( \theta ) goes from 0 to ( 2\pi ). So: [ A = \frac{1}{2} \int_{0}^{2\pi} (2 + \cos\theta)^2 , d\theta. ] Expand: ( (2 + \cos\theta)^2 = 4 + 4\cos\theta + \cos^2\theta ).
Thus: [ A = \frac{1}{2} \int_{0}^{2\pi} \left(4 + 4\cos\theta + \cos^2\theta\right) d\theta. ] We can compute each integral separately.
Note: ( \int_{0}^{2\pi} \cos\theta , d\theta = 0 ).
Also, ( \cos^2\theta = \frac{1 + \cos 2\theta}{2} ).
So: [ \int_{0}^{2\pi} \cos^2\theta , d\theta = \int_{0}^{2\pi} \frac{1 + \cos 2\theta}{2} , d\theta = \frac{1}{2} \int_{0}^{2\pi} 1 , d\theta + \frac{1}{2} \int_{0}^{2\pi} \cos 2\theta , d\theta. ] The second integral is zero because ( \cos 2\theta ) over a full period (actually two periods) integrates to zero. So: [ \int_{0}^{2\pi} \cos^2\theta , d\theta = \frac{1}{2} \cdot 2\pi = \pi. ]
Now: [ \int_{0}^{2\pi} 4 , d\theta = 4 \cdot 2\pi = 8\pi. ] [ \int_{0}^{2\pi} 4\cos\theta , d\theta = 0. ] So: [ \int_{0}^{2\pi} (4 + 4\cos\theta + \cos^2\theta) , d\theta = 8\pi + 0 + \pi = 9\pi. ] Thus: [ A = \frac{1}{2} \cdot 9\pi = \frac{9\pi}{2}. ] So ( a = \frac{9\pi}{2} ).
Now part (2): At the point ( (r, \theta) = \left( \frac{4+\sqrt{2}}{2}, \frac{\pi}{4} \right) ), find the slope of the tangent line to the curve ( C ) in the ( xy )-plane.
We have ( r = 2 + \cos\theta ). Check if the given point satisfies this: at ( \theta = \pi/4 ), ( \cos(\pi/4) = \sqrt{2}/2 ), so: [ r = 2 + \frac{\sqrt{2}}{2} = \frac{4 + \sqrt{2}}{2}. ] Yes, it matches.
We need the slope ( \frac{dy}{dx} ) at that point. In polar coordinates: [ x = r\cos\theta, \quad y = r\sin\theta. ] Then: [ \frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}. ] We have: [ \frac{dy}{d\theta} = \frac{dr}{d\theta} \sin\theta + r \cos\theta, ] [ \frac{dx}{d\theta} = \frac{dr}{d\theta} \cos\theta - r \sin\theta. ] Here, ( r = 2 + \cos\theta ), so ( \frac{dr}{d\theta} = -\sin\theta ).
Thus: [ \frac{dy}{d\theta} = (-\sin\theta) \sin\theta + r \cos\theta = -\sin^2\theta + r \cos\theta, ] [ \frac{dx}{d\theta} = (-\sin\theta) \cos\theta - r \sin\theta = -\sin\theta \cos\theta - r \sin\theta. ]
At ( \theta = \pi/4 ): [ \sin(\pi/4) = \cos(\pi/4) = \frac{\sqrt{2}}{2}. ] So: [ \sin^2(\pi/4) = \left( \frac{\sqrt{2}}{2} \right)^2 = \frac{2}{4} = \frac{1}{2}. ] [ r = \frac{4 + \sqrt{2}}{2}. ] Now compute: [ \frac{dy}{d\theta} = -\frac{1}{2} + r \cdot \frac{\sqrt{2}}{2} = -\frac{1}{2} + \frac{4 + \sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2}. ] Simplify: [ \frac{4 + \sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{(4 + \sqrt{2})\sqrt{2}}{4} = \frac{4\sqrt{2} + 2}{4} = \frac{2\sqrt{2} + 1}{2}. ] Wait, let's compute carefully: [ (4 + \sqrt{2}) \cdot \sqrt{2} = 4\sqrt{2} + 2. ] Divide by 4: ( \frac{4\sqrt{2} + 2}{4} = \frac{2\sqrt{2} + 1}{2} ). So: [ \frac{dy}{d\theta} = -\frac{1}{2} + \frac{2\sqrt{2} + 1}{2} = \frac{-\frac{1}{2} \cdot 2? Wait: better common denominator 2:} ] [ -\frac{1}{2} + \frac{2\sqrt{2} + 1}{2} = \frac{-1 + 2\sqrt{2} + 1}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2}. ] So ( \frac{dy}{d\theta} = \sqrt{2} ).
Now ( \frac{dx}{d\theta} = -\sin\theta \cos\theta - r \sin\theta ). At ( \theta = \pi/4 ): [ \sin\theta \cos\theta = \left( \frac{\sqrt{2}}{2} \right)^2 = \frac{1}{2}. ] So: [ \frac{dx}{d\theta} = -\frac{1}{2} - r \cdot \frac{\sqrt{2}}{2}. ] We already computed ( r \cdot \frac{\sqrt{2}}{2} = \frac{2\sqrt{2} + 1}{2} ). Thus: [ \frac{dx}{d\theta} = -\frac{1}{2} - \frac{2\sqrt{2} + 1}{2} = \frac{-1 - 2\sqrt{2} - 1}{2} = \frac{-2 - 2\sqrt{2}}{2} = -1 - \sqrt{2}. ]
Therefore: [ \frac{dy}{dx} = \frac{\sqrt{2}}{-1 - \sqrt{2}}. ] Simplify by multiplying numerator and denominator by ( -1 + \sqrt{2} ): [ \frac{\sqrt{2}}{-1 - \sqrt{2}} \cdot \frac{-1 + \sqrt{2}}{-1 + \sqrt{2}} = \frac{\sqrt{2}(-1 + \sqrt{2})}{(-1)^2 - (\sqrt{2})^2} = \frac{-\sqrt{2} + 2}{1 - 2} = \frac{2 - \sqrt{2}}{-1} = -2 + \sqrt{2}. ] So the slope is ( -2 + \sqrt{2} ).
The problem asks: "Express the answer from part (2) in the form ( b + \sqrt{c} ), where ( b ) and ( c ) are integers." Here, slope = ( -2 + \sqrt{2} ), so ( b = -2 ), ( c = 2 ).
But wait: the problem says "let those integers be the definitions of ( b ) and ( c )." So ( b = -2 ), ( c = 2 ).
Now we need to compute ( \frac{abc}{\pi} ), where ( a = \frac{9\pi}{2} ), ( b = -2 ), ( c = 2 ).
Thus: [ \frac{abc}{\pi} = \frac{ \frac{9\pi}{2} \cdot (-2) \cdot 2 }{ \pi } = \frac{ \frac{9\pi}{2} \cdot (-4) }{ \pi } = \frac{ -18\pi }{ \pi } = -18. ]
So the answer is -18.
Let me verify with Python to avoid mistakes.
[PYTHON] import sympy as sp
Part (1): area
theta = sp.symbols('theta') r = 2 + sp.cos(theta) area_expr = sp.Rational(1,2) * sp.integrate(r**2, (theta, 0, 2*sp.pi)) print("Area a =", area_expr) print("a =", area_expr.simplify())
Part (2): slope at given point
theta_val = sp.pi/4 r_val = (4 + sp.sqrt(2))/2 dr_dtheta = -sp.sin(theta_val) # derivative of r w.r.t theta
dy/dtheta and dx/dtheta
dy_dtheta = dr_dtheta * sp.sin(theta_val) + r_val * sp.cos(theta_val) dx_dtheta = dr_dtheta * sp.cos(theta_val) - r_val * sp.sin(theta_val)
slope = sp.simplify(dy_dtheta / dx_dtheta) print("Slope =", slope)
Express as b + sqrt(c)
slope_simplified = sp.simplify(slope) print("Simplified slope =", slope_simplified)
Identify b and c: slope = b + sqrt(c)
slope = -2 + sqrt(2)
b = -2 c = 2 print("b =", b, "c =", c)
Compute abc/pi
a = 9*sp.pi/2 abc_over_pi = (a * b * c) / sp.pi print("abc/pi =", abc_over_pi) print("abc/pi as integer =", abc_over_pi.simplify()) [/PYTHON]
[THOUGHT] The Python output confirms: area ( a = \frac{9\pi}{2} ), slope = ( -2 + \sqrt{2} ) so ( b = -2 ), ( c = 2 ), and ( \frac{abc}{\pi} = -18 ). The final answer is (-18).
\boxed{-18}