Let be a sequence satisfying the following conditions.\begin{center}\fbox{\begin{minipage}{0.9\textwidth}
- ,
- For every natural number , \end{minipage}}\end{center}Consider the following work to compute\begin{center}\fbox{\begin{minipage}{0.9\textwidth}For every natural number ,soand, after rearranging this expression,Fromsubstituting into both sides givesBy (i) and (ii),\sum_{k=1}^{12} a_k + \sum_{k=1}^{5} a_{2k+1} = a_1 + a_2 + \sum_{k=1}^{5} (2a_{2k+1} + a_{2k+2})$$$$= \boxed{(\text{C})}.\end{minipage}}\end{center}Let be the expression corresponding to \boxed{(\text{A})}, and let and be the numbers corresponding to \boxed{(\text{B})} and \boxed{(\text{C})}, respectively. Compute[4 points]\
[THOUGHT] We need to understand the problem. We have a sequence ({a_n}) with (a_1 = 7) and for (n \ge 2): [ S_n := \sum_{k=1}^n a_k = \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10. ] We are given some work that leads to blanks (A), (B), (C). We need to find (p) and (q) corresponding to (B) and (C), and (f(n)) corresponding to (A), then compute (\frac{p \times q}{f(12)}).
First, let's derive the recurrence. For (n \ge 2): [ S_n = \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10. ] Also (S_{n+1} = \frac{2}{3} a_{n+1} + \frac{1}{6}(n+1)^2 - \frac{1}{6}(n+1) + 10).
But (a_{n+1} = S_{n+1} - S_n). So: [ a_{n+1} = \left[ \frac{2}{3} a_{n+1} + \frac{1}{6}(n+1)^2 - \frac{1}{6}(n+1) + 10 \right] - \left[ \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10 \right]. ] Simplify: [ a_{n+1} = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{1}{6}[(n+1)^2 - n^2] - \frac{1}{6}[(n+1) - n]. ] Compute differences: [ (n+1)^2 - n^2 = 2n+1, \quad (n+1) - n = 1. ] So: [ a_{n+1} = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{1}{6}(2n+1) - \frac{1}{6}(1) = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{1}{6}(2n+1 - 1) = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{1}{6}(2n). ] [ \frac{1}{6}(2n) = \frac{n}{3}. ] Thus: [ a_{n+1} = \frac{2}{3} a_{n+1} - \frac{2}{3} a_n + \frac{n}{3}. ] Bring (\frac{2}{3} a_{n+1}) to left: [ a_{n+1} - \frac{2}{3} a_{n+1} = -\frac{2}{3} a_n + \frac{n}{3}. ] [ \frac{1}{3} a_{n+1} = -\frac{2}{3} a_n + \frac{n}{3}. ] Multiply by 3: [ a_{n+1} = -2 a_n + n. ] So recurrence: (a_{n+1} = -2 a_n + n), for (n \ge 2)? Wait, we derived for (n \ge 2) because original (S_n) formula holds for (n \ge 2). Let's check: The step used (S_n) formula for (n) and (n+1) both (\ge 2), so (n \ge 2) indeed. But we can compute (a_2) using (S_2) formula.
Now, the problem's work says: [ a_{n+1} = \sum_{k=1}^{n+1} a_k - \sum_{k=1}^n a_k = \frac{2}{3}(a_{n+1} - a_n) + \boxed{(\text{A})}. ] Let's verify: (S_{n+1} - S_n = \frac{2}{3} a_{n+1} + \frac{1}{6}(n+1)^2 - \frac{1}{6}(n+1) + 10 - \left( \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10 \right) = \frac{2}{3}(a_{n+1} - a_n) + \frac{1}{6}[(n+1)^2 - n^2] - \frac{1}{6}[(n+1)-n]). We computed that difference as (\frac{1}{6}(2n+1) - \frac{1}{6}(1) = \frac{2n}{6} = \frac{n}{3}). So indeed: [ a_{n+1} = \frac{2}{3}(a_{n+1} - a_n) + \frac{n}{3}. ] Thus (A) is (\frac{n}{3})? But careful: In the work, they wrote: [ a_{n+1} = \frac{2}{3}(a_{n+1} - a_n) + \boxed{(\text{A})}. ] So (\boxed{(\text{A})}) should be (\frac{n}{3}). But then they say "after rearranging this expression, (2a_n + a_{n+1} = 3 \times \boxed{(\text{A})})". Let's check: Starting from (a_{n+1} = \frac{2}{3}(a_{n+1} - a_n) + A) where (A = \frac{n}{3}). Multiply both sides by 3: (3a_{n+1} = 2(a_{n+1} - a_n) + 3A). So (3a_{n+1} = 2a_{n+1} - 2a_n + 3A). Then (a_{n+1} = -2a_n + 3A). So (2a_n + a_{n+1} = 3A). Indeed they wrote (2a_n + a_{n+1} = 3 \times \boxed{(\text{A})}). So (\boxed{(\text{A})}) is (\frac{n}{3}). But they define (f(n)) as the expression corresponding to (A). So (f(n) = \frac{n}{3}). Wait, but then (f(12) = \frac{12}{3} = 4). But let's verify later.
Now (B): substituting (n=2) into both sides of (S_n = \frac{2}{3} a_n + \frac{1}{6}n^2 - \frac{1}{6}n + 10) gives (S_2 = a_1 + a_2 = 7 + a_2). Right side: (\frac{2}{3} a_2 + \frac{1}{6}(4) - \frac{1}{6}(2) + 10 = \frac{2}{3} a_2 + \frac{4}{6} - \frac{2}{6} + 10 = \frac{2}{3} a_2 + \frac{2}{6} + 10 = \frac{2}{3} a_2 + \frac{1}{3} + 10). So: [ 7 + a_2 = \frac{2}{3} a_2 + \frac{1}{3} + 10. ] Multiply by 3: (21 + 3a_2 = 2a_2 + 1 + 30). So (21 + 3a_2 = 2a_2 + 31). Thus (3a_2 - 2a_2 = 31 - 21), so (a_2 = 10). So (B) is 10. That's (p = 10).
Now (C): They claim: [ \sum_{k=1}^{12} a_k + \sum_{k=1}^{5} a_{2k+1} = a_1 + a_2 + \sum_{k=1}^{5} (2a_{2k+1} + a_{2k+2}) = \boxed{(\text{C})}. ] Let's understand: The left side is (S_{12} + \sum_{k=1}^{5} a_{2k+1}). But note (a_1 + a_2 + \sum_{k=1}^{5} (2a_{2k+1} + a_{2k+2}) = a_1 + a_2 + \sum_{k=1}^{5} 2a_{2k+1} + \sum_{k=1}^{5} a_{2k+2}). The second sum is (a_4 + a_6 + a_8 + a_{10} + a_{12}). The first sum is (a_3 + a_5 + a_7 + a_9 + a_{11}). So total: (a_1 + a_2 + 2(a_3 + a_5 + a_7 + a_9 + a_{11}) + (a_4 + a_6 + a_8 + a_{10} + a_{12})). But left side is (S_{12} + (a_3 + a_5 + a_7 + a_9 + a_{11}) = (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 + a_8 + a_9 + a_{10} + a_{11} + a_{12}) + (a_3 + a_5 + a_7 + a_9 + a_{11})). So left = (a_1 + a_2 + 2a_3 + a_4 + 2a_5 + a_6 + 2a_7 + a_8 + 2a_9 + a_{10} + 2a_{11} + a_{12}). That matches right side. So indeed the equality holds.
Now they say this equals (C). But (C) is the value of that expression. So we need to compute (a_1 + a_2 + \sum_{k=1}^{5} (2a_{2k+1} + a_{2k+2})). Using recurrence (a_{n+1} = -2a_n + n), we can compute (a_n) for (n=1) to (13). We have (a_1 = 7), (a_2 = 10). Then: (a_3 = -2a_2 + 2 = -20 + 2 = -18) (a_4 = -2a_3 + 3 = 36 + 3 = 39) (a_5 = -2a_4 + 4 = -78 + 4 = -74) (a_6 = -2a_5 + 5 = 148 + 5 = 153) (a_7 = -2a_6 + 6 = -306 + 6 = -300) (a_8 = -2a_7 + 7 = 600 + 7 = 607) (a_9 = -2a_8 + 8 = -1214 + 8 = -1206) (a_{10} = -2a_9 + 9 = 2412 + 9 = 2421) (a_{11} = -2a_{10} + 10 = -4842 + 10 = -4832) (a_{12} = -2a_{11} + 11 = 9664 + 11 = 9675) (a_{13} = -2a_{12} + 12 = -19350 + 12 = -19338) (not needed maybe).
Now compute (2a_{2k+1} + a_{2k+2}) for (k=1) to (5):
k=1: (2a_3 + a_4 = 2(-18) + 39 = -36 + 39 = 3) k=2: (2a_5 + a_6 = 2(-74) + 153 = -148 + 153 = 5) k=3: (2a_7 + a_8 = 2(-300) + 607 = -600 + 607 = 7) k=4: (2a_9 + a_{10} = 2(-1206) + 2421 = -2412 + 2421 = 9) k=5: (2a_{11} + a_{12} = 2(-4832) + 9675 = -9664 + 9675 = 11)
Sum of these: (3+5+7+9+11 = 35).
Then (a_1 + a_2 = 7 + 10 = 17). So total = (17 + 35 = 52). So (C) = 52. That's (q = 52).
Now (f(n) = \frac{n}{3}), so (f(12) = 4).
Then (\frac{p \times q}{f(12)} = \frac{10 \times 52}{4} = \frac{520}{4} = 130).
Thus answer is 130.
But let's double-check with Python to ensure no arithmetic mistake.
We'll compute using Python. </think>
[PYTHON]
Given a1 = 7, a2 = 10 from earlier derivation.
a = [0] * 13 # indices 1..12 a[1] = 7 a[2] = 10 for n in range(2, 12): # n from 2 to 11, compute a_{n+1} a[n+1] = -2 * a[n] + n
print("a[1] to a[12]:", [a[i] for i in range(1, 13)])
Compute f(n) = n/3
def f(n): return n / 3
p = a2 = 10
p = a[2]
Compute q = a1 + a2 + sum_{k=1..5} (2*a_{2k+1} + a_{2k+2})
q = a[1] + a[2] for k in range(1, 6): q += 2 * a[2k + 1] + a[2k + 2]
print("p =", p) print("q =", q) print("f(12) =", f(12)) print("p*q / f(12) =", p * q / f(12)) [/PYTHON]
[THOUGHT] From the Python output, we have ( p = 10 ), ( q = 52 ), ( f(12) = 4.0 ), and ( \frac{p \times q}{f(12)} = 130.0 ). The problem asks for the value of ( \frac{p \times q}{f(12)} ), which is ( 130 ). The final answer is ( \boxed{130} ). [/THOUGHT] \boxed{130}