Problem Analysis #1

635.75s
65,630 toks
Problem Statement

For a square matrix AA, the matrix exponential eAe^{A} is defined byeA=E+k=11k!Ak,e^{A} = E + \sum_{k=1}^{\infty} \frac{1}{k!}A^{k},where EE is the identity matrix.

  • [(1)] Let A=(1445810335). A= \begin{pmatrix} -1 & 4 & 4 \\ -5 & 8 & 10 \\ 3 & -3 & -5 \end{pmatrix}. Compute the matrix exponential eAe^{A}.
  • [(2)] Consider the matrices Ax=(0x0x00001),B=(100010001), A_x= \begin{pmatrix} 0 & -x & 0 \\ x & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},\qquad B= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, where xx is a real number, and define the vector a=(11e). a= \begin{pmatrix} 1 \\[2mm] 1 \\[2mm] e \end{pmatrix}. Let C=BeAxC = B e^{A_x}. Determine the minimum and maximum values of yTCyyTy \frac{y^{T} C y}{y^{T}y} over all nonzero real vectors yR3y\in\mathbb{R}^{3}.
  • [(3)] Let f(z)=12zTCzaTz,z=(z1z2z3), f(z)=\frac{1}{2}z^{T} C z - a^{T}z, \qquad z= \begin{pmatrix} z_{1}\\ z_{2}\\ z_{3} \end{pmatrix}, where CC is the matrix from part (2). Find the value of z12+z22+z32 \sqrt{z_1^2+z_2^2+z_3^2} for the vector zz satisfying fz1=fz2=fz3=0. \frac{\partial f}{\partial z_{1}} = \frac{\partial f}{\partial z_{2}} = \frac{\partial f}{\partial z_{3}} =0. Let λ1,λ2,λ3\lambda_1,\lambda_2,\lambda_3 be the eigenvalues of the matrix AA in part {\rm (1)}. Let mm and MM be the minimum and maximum values, respectively, obtained in part {\rm (2)}, and letR=z12+z22+z32R = \sqrt{z_1^2+z_2^2+z_3^2}be the value obtained in part {\rm (3)}. Computeλ1λ2λ3mR2(λ12+λ22+λ32).\lambda_1\lambda_2\lambda_3 \cdot m \cdot R^2 \cdot \bigl(\lambda_1^2+\lambda_2^2+\lambda_3^2\bigr).\
Ground Truth
252
Execution Trace
Reasoning Process
  • Identify Goal: Compute (\lambda_1\lambda_2\lambda_3 \cdot m \cdot R^2 \cdot (\lambda_1^2+\lambda_2^2+\lambda_3^2)), where (\lambda_i) are eigenvalues of the matrix (A) in part (1), (m) is the minimum of (\frac{y^T C y}{y^T y}) from part (2), and (R = \sqrt{z_1^2+z_2^2+z_3^2}) from part (3).

  • Knowns & Constraints:

    • Part (1): (A = \begin{pmatrix} -1 & 4 & 4 \ -5 & 8 & 10 \ 3 & -3 & -5 \end{pmatrix}).
    • Part (2): (A_x = \begin{pmatrix} 0 & -x & 0 \ x & 0 & 0 \ 0 & 0 & 1 \end{pmatrix},; B = \begin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix},; C = B e^{A_x}).
    • Part (3): (f(z)=\frac{1}{2}z^T C z - a^T z) with (a = \begin{pmatrix} 1 \ 1 \ e \end{pmatrix}); (R = |z|) where (\nabla f = 0).

Step 1: Eigenvalues of (A) (from part 1)

The product of eigenvalues (\lambda_1\lambda_2\lambda_3 = \det A).
[ \det A = \begin{vmatrix} -1 & 4 & 4 \ -5 & 8 & 10 \ 3 & -3 & -5 \end{vmatrix} = -6. ]

The sum of squares of eigenvalues is (\operatorname{tr}(A^2)). Compute (A^2):

[ A^2 = \begin{pmatrix} -7 & 16 & 16 \ -5 & 14 & 10 \ -3 & 3 & 7 \end{pmatrix}, \quad \operatorname{tr}(A^2) = -7 + 14 + 7 = 14. ]

Thus (\lambda_1^2+\lambda_2^2+\lambda_3^2 = 14).


Step 2: Minimum (m) from part (2)

First compute (e^{A_x}). Because (A_x) is block‑diagonal:

[ e^{A_x} = \begin{pmatrix} \cos x & -\sin x & 0 \ \sin x & \phantom{-}\cos x & 0 \ 0 & 0 & e \end{pmatrix}. ]

Then

[ C = B e^{A_x} = \begin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ imizing at zero? ]

Now consider the Rayleigh quotient (\frac{y^T C y}{y^T y}). Its values depend only on the symmetric part (S = \frac{C+C^T}{2}):

[ S = \begin{pmatrix} \cos x & -\sin x & 0 \ -\sin x & -\cos x & 0 \ 0 & 0 & e \end{pmatrix}. ]

The eigenvalues of the (2\times2) block are (\pm 1) (its characteristic polynomial is (\lambda^2-1)), so eigenvalues of (S) are (-1,;1,;e).
Hence the minimum of the Rayleigh quotient is (m = -1).


Step 3: Compute (R^2) from part (3)

The stationary point satisfies (\nabla f = S z - a = 0), i.e. (S z = a). Solve:

[ \begin{cases} \cos x \cdot z_1 - \sin x \cdot z_2 = 1, \ -\sin x \cdot z_1 - \cos x \cdot z_2 = 1, \ e \cdot z_3 = e. \end{cases} ]

From the third, (z_3 = 1). Solving the first two (e.g., using the inverse of the (2\times2) matrix) gives

[ z_1 = \cos x - \sin x,\qquad z_2 = -\sin x - \cos x. ]

Then

[ z_1^2 + z_2^2 = (\cos x - \sin x)^2 + (\sin x + \cos x)^2 = 2,\quad \text{so}\quad R^2 = z_1^2+z_2^2+z_3^2 = 2 + 1 = 3. ]

Thus (R^2 = 3).


Step 4: Combine all quantities

[ \lambda_1\lambda_2\lambda_3 = -6,\qquad m = -1,\qquad R^2 = 3,\qquad \lambda_1^2+\lambda_2^2+\lambda_3^2 = 14. ]

[ \lambda_1\lambda_2\lambda_3 \cdot m \cdot R^2 \cdot (\lambda_1^2+\lambda_2^2+\lambda_3^2) = (-6)\cdot(-1)\cdot 3 \cdot 14 = 6 \cdot 3 \cdot 14 = 252. ]


  • Answer: (\boxed{252})
Reasoning Process

[THOUGHT]

I need to compute the product λ1λ2λ3 · m · R^2 · (λ1^2+λ2^2+λ3^2).

  • λ1λ2λ3 = det(A) = -6 (verified via row reduction).
  • m = minimum of (yᵀ C y)/(yᵀ y) where C = B e^{A_x}. The symmetric part S = (C+Cᵀ)/2 has eigenvalues -1, 1, e, so m = -1.
  • R² = 3 from solving S z = a, independent of x.
  • λ1²+λ2²+λ3² = trace(A²). Compute A²:

A = [[-1,4,4],[-5,8,10],[3,-3,-5]] A² = A @ A = [[-7,16,16],[-5,12,10],[-3,3,4]] (as computed earlier). trace(A²) = -7 + 12 + 4 = 9.

Thus product = (-6) * (-1) * 3 * 9 = 6 * 27 = 162? Wait 627=162. But earlier I had 252. Let's compute: (-6)(-1)=6, 63=18, 189=162. So product = 162.

But earlier I had sum of squares = 14, which was wrong. Now with trace(A²)=9, product = 162.

Double-check trace(A²) with Python to be absolutely sure.

[PYTHON] import numpy as np A = np.array([[-1,4,4],[-5,8,10],[3,-3,-5]], dtype=float) A2 = A @ A print("A^2 =") print(A2) print("Trace(A^2) =", np.trace(A2)) print("det(A) =", np.linalg.det(A)) [/PYTHON]

Tool Output
[PYTHON OUTPUT] A^2 = [[-7. 16. 16.] [-5. 14. 10.] [-3. 3. 7.]] Trace(A^2) = 14.0 det(A) = -5.999999999999995 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT]
The Python output confirms:

  • (\det(A) = -6) → (\lambda_1\lambda_2\lambda_3 = -6)
  • (\operatorname{tr}(A^2) = 14) → (\lambda_1^2+\lambda_2^2+\lambda_3^2 = 14)
  • (m = -1), (R^2 = 3)

Product = ((-6) \cdot (-1) \cdot 3 \cdot 14 = 252).

Final answer: \boxed{252}

Final Model Output
252

Comparative Analysis (P1) (Average across runs)

Avg Time Taken

K-EXAONE-236B-A23B
575.7
GPT-5.1 (high)
150.0
Llama-VARCO-8B-Instruct
141.2
Deepseek-V3.2
124.1
A.X-4.0 (72B)
99.6
Gemini-3-Pro-Preview
97.2
Kanana-2-30B-Thinking
84.0
Kanana-2-30B-Thinking-2601
55.4
Claude-Opus-4.5
43.6
Solar-Pro-2 (31B)(high)
40.8
K-EXAONE-236B-A23B
40.2
HCX-007(high)
39.6
Grok-4.1-fast
34.8
GPT-5.2 (high)
34.3
Solar-Open-100B
32.5
axk1
13.5
EXAONE-4.0.1-32B (high)
6.3

Avg Token Usage

K-EXAONE-236B-A23B
59096.7
Claude-Opus-4.5
19293.0
Gemini-3-Pro-Preview
14285.0
Kanana-2-30B-Thinking
13812.0
Llama-VARCO-8B-Instruct
13418.0
Kanana-2-30B-Thinking-2601
12936.0
K-EXAONE-236B-A23B
11127.0
Deepseek-V3.2
9555.0
GPT-5.1 (high)
9506.0
Grok-4.1-fast
9320.0
Solar-Pro-2 (31B)(high)
8677.0
Solar-Open-100B
8267.0
HCX-007(high)
5746.0
A.X-4.0 (72B)
5358.0
GPT-5.2 (high)
5281.0
EXAONE-4.0.1-32B (high)
5236.0
axk1
4605.0