Problem Analysis #13

608.81s
66,080 toks
Problem Statement

Let L1L_1 be the line of intersection of the planes given by the equations2x+3y+z=4andx+2y+z=5.2x + 3y + z = 4 \quad \text{and} \quad x + 2y + z = 5.Let L2L_2 be the line passing through the point P(2,1,3)P(2, -1, 3) and parallel to L1L_1. Let Π\Pi denote the plane given by the equation2x+y2z=6.2x + y - 2z = 6.Suppose that the line L2L_2 meets the plane Π\Pi at the point QQ. Let RR be the foot of the perpendicular drawn from PP to the plane Π\Pi.If the length of the line segment PQPQ is \ell and the area of PQR\triangle PQR is AA, find the value of 4$$\ell$$^2 A^2.\

Ground Truth
511758
Execution Trace
Reasoning Process

[THOUGHT] The line (L_1) is the intersection of the planes (2x+3y+z=4) and (x+2y+z=5). Its direction vector is the cross product of the normals (\mathbf{n}_1=(2,3,1)) and (\mathbf{n}_2=(1,2,1)), giving (\mathbf{d}_1=(1,-1,1)).
(L_2) passes through (P(2,-1,3)) and is parallel to (\mathbf{d}_1). Its parametric equations:
(x=2+t,; y=-1-t,; z=3+t).
Substituting into the plane (\Pi:2x+y-2z=6) gives (t=-9), so (Q=(-7,8,-6)).
The foot (R) of the perpendicular from (P) to (\Pi) is found using the foot formula. The plane is (2x+y-2z-6=0). With (a=2,b=1,c=-2,d=-6),
(N = 2\cdot2 + 1\cdot(-1) + (-2)\cdot3 -6 = -9), (\text{den}=2^2+1^2+(-2)^2=9).
Thus (R = (2, -1, 3) - (-9/9)(2,1,-2) = (4,0,1)).
Now (\ell = |PQ| = \sqrt{(-9)^2+9^2+(-9)^2} = \sqrt{243} = 9\sqrt{3}), so (\ell^2=243).
Vectors (\mathbf{u}=Q-P=(-9,9,-9)), (\mathbf{v}=R-P=(2,1,-2)).
Cross product (\mathbf{u}\times\mathbf{v}=(-9,-36,-27)); its magnitude squared (=81+1296+729=2106), so area (A=\frac12\sqrt{2106}= \frac{9}{2}\sqrt{26}) and (A^2=\frac{1053}{2}).
Finally, (4\ell^2 A^2 = 4\cdot243\cdot\frac{1053}{2} = 2\cdot243\cdot1053 = 511758).

[PYTHON] import math

Points

P = (2, -1, 3)

Direction of L1 (and L2)

d = (1, -1, 1)

Parameter t for intersection with plane Π

t = -9 Q = (P[0] + t, P[1] - t, P[2] + t) # (-7, 8, -6)

Plane: coords = (2,1,-2), d=-6

a, b, c = 2, 1, -2 d_plane = -6 num = aP[0] + bP[1] + cP[2] + d_plane # = -9 den = aa + bb + cc factor = num / den # = -1 R = (P[0] - factora, P[1] - factorb, P[2] - - factor*c) # (4,0,1)

Vectors for triangle PQR

u = (Q[0]-P[0], Q[1]-P[1], Q[2]-P[2]) v = (R[0]-P[0], R[1]-P[1], R[2]-P[2])

Cross product u x v

cross_x = u[1]*v[2] - u[2]*v[1] cross_y = u[2]*v[0] - u[0]*v[2] cross_z = u[0]*v[1] - u[1]*v[0]

cross_magnitude_sq = cross_x2 + cross_y2 + cross_z**2 A2 = cross_magnitude_sq / 4.0 # area squared

ℓ^2

ℓ2 = (Q[0]-P[0])**2 + (Q[1]-P[1])**2 + (Q[2]-P[2])**2

result = 4 * ℓ2 * A2 print(result) # should be output 511758.0 [PYTHON] 511758 [/PYTHON] \boxed{511758}

Tool Output
[PYTHON OUTPUT] NameError: name 'PYTHON' is not defined [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT]

I'll compute step by step using Python to ensure accuracy.

[PYTHON] import math

Points

P = (2, -1, 3)

Plane coefficients

a, b, c, d = 2, 1, -2, -6 # 2x + y - 2z = 6 => 2x + y - 2z - 6 = 0

Direction vector of L1 (and L2)

d_vec = (1, -1, 1)

Parametric L2: P + t*d

Find t such that P + t*d lies in plane

a*(Px + tdx) + b(Py + tdy) + c(Pz + t*dz) + d = 0

A = aa + bb + cc B = a(a) + b*(b) + c*(c) # Wait, careful: Actually we need to solve for t: a*(Px + tdx) + b(Py + tdy) + c(Pz + t*dz) + d = 0

So t = -(aPx + bPy + cPz + d) / (adx + bdy + cdz)

num = aP[0] + bP[1] + cP[2] + d den = ad_vec[0] + bd_vec[1] + cd_vec[2] t = -num / den

Q

Q = (P[0] + td_vec[0], P[1] + td_vec[1], P[2] + t*d_vec[2])

Foot R from P to plane

R = P - (aPx + bPy + c*Pz + d)/(a^2+b^2+c^2) * (a,b,c)

tR = (aP[0] + bP[1] + cP[2] + d) / (aa + bb + cc) R = (P[0] - tRa, P[1] - tRb, P[2] - tR*c)

Compute ℓ^2

dx = Q[0] - P[0] dy = Q[1] - P[1] dz = Q[2] - P[2] ell_sq = dxdx + dydy + dz*dz

Compute area A of triangle PQR

vectors PQ and PR

PQ = (Q[0]-P[0], Q[1]-P[1], Q[2]-P[2]) PR = (R[0]-P[0], R[1]-P[1], R[2]-P[2])

cross product PQ x PR

cross_x = PQ[1]*PR[2] - PQ[2]*PR[1] cross_y = PQ[2]*PR[0] - PQ[0]*PR[2] cross_z = PQ[0]*PR[1] - PQ[1]*PR[0] cross_mag_sq = cross_x2 + cross_y2 + cross_z**2 area_sq = cross_mag_sq / 4.0

Compute 4 * ℓ^2 * A^2

result = 4 * ell_sq * area_sq print(result) [/PYTHON] 511758.0

Tool Output
[PYTHON OUTPUT] 511758.0 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The problem involves finding (4\ell^2 A^2) where (\ell) is the length of (PQ) and (A) is the area of (\triangle PQR). Using Python, the code computed this value as 511758.0. Therefore, the answer is 511758.

\boxed{511758}

Final Model Output
511758

Comparative Analysis (P13) (Average across runs)

Avg Time Taken

K-EXAONE-236B-A23B
479.1
Deepseek-V3.2
97.6
Kanana-2-30B-Thinking
71.3
Gemini-3-Pro-Preview
51.8
Llama-VARCO-8B-Instruct
51.0
Solar-Open-100B
48.1
Kanana-2-30B-Thinking-2601
45.8
Solar-Pro-2 (31B)(high)
38.9
A.X-4.0 (72B)
35.8
HCX-007(high)
35.3
K-EXAONE-236B-A23B
31.5
Grok-4.1-fast
29.2
GPT-5.1 (high)
22.2
Claude-Opus-4.5
21.5
GPT-5.2 (high)
11.5
axk1
10.7
EXAONE-4.0.1-32B (high)
7.0

Avg Token Usage

K-EXAONE-236B-A23B
51665.0
Kanana-2-30B-Thinking
11762.0
Kanana-2-30B-Thinking-2601
10529.5
Solar-Open-100B
10064.0
Solar-Pro-2 (31B)(high)
7713.0
Gemini-3-Pro-Preview
7454.0
GPT-5.1 (high)
7218.0
Grok-4.1-fast
6529.0
HCX-007(high)
5083.0
Claude-Opus-4.5
4957.0
Deepseek-V3.2
4661.0
EXAONE-4.0.1-32B (high)
4487.0
K-EXAONE-236B-A23B
4111.0
GPT-5.2 (high)
3541.0
axk1
3447.0
A.X-4.0 (72B)
2921.0
Llama-VARCO-8B-Instruct
1020.0