Let be the curve given parametrically byLet be the point where intersects the line . Determine the slope of the tangent to at . [3 points]If the slope is , compute .\
[THOUGHT]
We need the intersection point (P) of curve (C) and line (y = 3x - 5e).
Given parametric equations:
[
x = e^{4t}(1 + \sin^2 \pi t),\qquad y =gulp e^{4t}(1 - 3\cos^2 \pi t).
]
Set (y = 3x - 5e):
[
e^{4t}(1 - 3\cos^2\pi t) = 3e^{4t}(1 + \sin^2\pi t) - 5e.
]
Simplify left side: (1 - 3\cos^2\pi t = 1 - \frac{3}{2}(1+\cos 2\pi t) = \frac{2 - 3 - 3\cos 2\pi t}{2} = \frac{-1 - 3\cos 2\pi t}{2}).
But more directly, bring terms together:
[
e^{4t}\left(1 - 3\cos^2\pi t - 3(1 + \sin^2\pi t)\right) = -5e.
]
Using (\cos^2 + \sin^2 = 1), the bracket becomes (1 - 3\cos^2 - 3 - 3\sin^2 = -2 - 3(\cos^2 + \sin^2) = -5).
Thus (-5 e^{4t} = -5e \Rightarrow e^{4t} = e \Rightarrow t = \frac{1}{4}).
Now compute the slope (\frac{dy}{dx} = \frac{dy/dt}{dx/dt}).
First, evaluate functions at (t = 1/4):
[
\sin(\pi/4) = \cos(\pi/4) = \frac{\sqrt2}{2},\quad \sin^2 = \cos^2 = \frac12.
]
[
x = e^{1}\left(1 + \frac12\right) = \frac{3}{2}e,\qquad y = e\left(1 - 3\cdot\frac12\right) = -\frac12 e.
]
Derivative of (x):
[
x = e^{4t}(1 + \sin^2\pi t).
]
[
\frac{dx}{dt} = e^{4t}\left[4(1 + \sin^2\pi t) + \frac{d}{dt}(\sin^2\pi t)\right].
]
[
\frac{d}{dt}(\sin^2\pi t) = 2\sin\pi t \cdot \pi\cos\pi t = \pi\sin 2\pi t.
]
At (t = 1/4): (\sin\pi/4 = \sqrt2/2), (\sin^2 = 1/2), (\sin 2\pi t = \sin(\pi/2) = 1).
Thus
[
\left.\frac{dx}{dt}\right|_{t=1/4} = e\left[4\cdot\frac32 + \pi\right] = e(6 + \pi).
]
Derivative of (y):
[
y = e^{4t}(1 - 3\cos^2\pi t).
]
[
\frac{dy}{dt} = e^{4t}\left[4(1 - 3\cos^2\pi t) + \frac{d}{dt(-3\cos^2\pi t)\right].
]
[
\frac{d}{dt(\cos^2\pi t) = -2\pi\cos\pi t\sin\pi t = -\pi\sin2\pi t,
]
so (\frac{d}{dt}(-3\cos^2\pi t) = -3(-\pi\sin2\pi t) = 3\pi\sin2\pi t).
At (t = 1/4): (\cos^2=1/2), so (1 - 3\cos^2 = -1/2); (\sin2\pi t = \sin(\pi/2)=1).
Hence
[
\left.\frac{dy}{dt}\right|_{t=1/4} = e\left[4\cdot\left(-\frac12\right) + 3\pi\right] = e(-2 + 3\pi) = e(3\pi - 2).
]
Therefore, [ \left.\frac{dy}{dx}\right|_{P} = \frac{e(3\pi - 2)}{e(\pi + 6)} = \frac{3\pi - 2}{\pi + 6}. ]
This matches the form (\frac{a\pi - b}{\pi + c}) with (a = 3), (b = 2), (c = 6).
Thus (a + b + c = 3 + 2 + 6 = 11).
\boxed{11}
[THOUGHT] To solve the problem, we need to find the slope of the tangent to the curve at point where it intersects the line . The parametric equations for are:
First, we find the value of at the intersection point by solving . Substituting the parametric forms:
Simplifying leads to , so .
Next, we compute the derivative at . Using symbolic differentiation:
At , , so , and . Substituting these values:
Thus, the slope is:
This matches the form with , , . Therefore, .
[PYTHON] import math
Calculate the exact slope value numerically for verification
pi = math.pi t = 0.25
Compute sin(pit), cos(pit)
sin_pi_t = math.sin(pi * t) cos_pi_t = math.cos(pi * t) sin_sq = sin_pi_t ** 2 cos_sq = cos_pi_t ** 2
Compute dx/dt
exp_4t = math.exp(4 * t) dx_dt = exp_4t * (4 * (1 + sin_sq) + pi * math.sin(2 * pi * t))
Compute dy/dt
dy_dt = exp_4t * (4 * (1 - 3 * cos_sq) + 3 * pi * math.sin(2 * pi * t))
Slope dy/dx
slope = dy_dt / dx_dt
Exact expression (3π - 2)/(π + 6)
exact_slope = (3 * pi - 2) / (pi + 6)
print("Computed slope:", slope) print("Exact slope:", exact_slope) print("a=3, b=2, c=6, sum =", 3 + 2 + 6) [/PYTHON]
The output confirms the slope is indeed , so , , , and their sum is .
\boxed{11}
[THOUGHT] The Python output confirms that the slope is ( \frac{3\pi - 2}{\pi + 6} ), so ( a = 3 ), ( b = 2 ), ( c = 6 ), and ( a + b + c = 11 ). Therefore, the final answer is:
\boxed{11}