Problem Analysis #41

149.77s
17,900 toks
Problem Statement

Let CC be the curve given parametrically byx=e4t(1+sin2πt),y=e4t(13cos2πt).x = e^{4t}(1 + \sin^2 \pi t), \qquad y = e^{4t}(1 - 3\cos^2 \pi t).Let PP be the point where CC intersects the line y=3x5ey = 3x - 5e. Determine the slope of the tangent to CC at PP. [3 points]If the slope is aπbπ+c\frac{a\pi - b}{\pi + c}, compute a+b+ca+b+c.\

Ground Truth
11
Execution Trace
Reasoning Process

[THOUGHT] We need the intersection point (P) of curve (C) and line (y = 3x - 5e).
Given parametric equations: [ x = e^{4t}(1 + \sin^2 \pi t),\qquad y =gulp e^{4t}(1 - 3\cos^2 \pi t). ] Set (y = 3x - 5e): [ e^{4t}(1 - 3\cos^2\pi t) = 3e^{4t}(1 + \sin^2\pi t) - 5e. ] Simplify left side: (1 - 3\cos^2\pi t = 1 - \frac{3}{2}(1+\cos 2\pi t) = \frac{2 - 3 - 3\cos 2\pi t}{2} = \frac{-1 - 3\cos 2\pi t}{2}).
But more directly, bring terms together: [ e^{4t}\left(1 - 3\cos^2\pi t - 3(1 + \sin^2\pi t)\right) = -5e. ] Using (\cos^2 + \sin^2 = 1), the bracket becomes (1 - 3\cos^2 - 3 - 3\sin^2 = -2 - 3(\cos^2 + \sin^2) = -5).
Thus (-5 e^{4t} = -5e \Rightarrow e^{4t} = e \Rightarrow t = \frac{1}{4}).

Now compute the slope (\frac{dy}{dx} = \frac{dy/dt}{dx/dt}).
First, evaluate functions at (t = 1/4): [ \sin(\pi/4) = \cos(\pi/4) = \frac{\sqrt2}{2},\quad \sin^2 = \cos^2 = \frac12. ] [ x = e^{1}\left(1 + \frac12\right) = \frac{3}{2}e,\qquad y = e\left(1 - 3\cdot\frac12\right) = -\frac12 e. ]

Derivative of (x): [ x = e^{4t}(1 + \sin^2\pi t). ] [ \frac{dx}{dt} = e^{4t}\left[4(1 + \sin^2\pi t) + \frac{d}{dt}(\sin^2\pi t)\right]. ] [ \frac{d}{dt}(\sin^2\pi t) = 2\sin\pi t \cdot \pi\cos\pi t = \pi\sin 2\pi t. ] At (t = 1/4): (\sin\pi/4 = \sqrt2/2), (\sin^2 = 1/2), (\sin 2\pi t = \sin(\pi/2) = 1).
Thus [ \left.\frac{dx}{dt}\right|_{t=1/4} = e\left[4\cdot\frac32 + \pi\right] = e(6 + \pi). ]

Derivative of (y): [ y = e^{4t}(1 - 3\cos^2\pi t). ] [ \frac{dy}{dt} = e^{4t}\left[4(1 - 3\cos^2\pi t) + \frac{d}{dt(-3\cos^2\pi t)\right]. ] [ \frac{d}{dt(\cos^2\pi t) = -2\pi\cos\pi t\sin\pi t = -\pi\sin2\pi t, ] so (\frac{d}{dt}(-3\cos^2\pi t) = -3(-\pi\sin2\pi t) = 3\pi\sin2\pi t).
At (t = 1/4): (\cos^2=1/2), so (1 - 3\cos^2 = -1/2); (\sin2\pi t = \sin(\pi/2)=1).
Hence [ \left.\frac{dy}{dt}\right|_{t=1/4} = e\left[4\cdot\left(-\frac12\right) + 3\pi\right] = e(-2 + 3\pi) = e(3\pi - 2). ]

Therefore, [ \left.\frac{dy}{dx}\right|_{P} = \frac{e(3\pi - 2)}{e(\pi + 6)} = \frac{3\pi - 2}{\pi + 6}. ]

This matches the form (\frac{a\pi - b}{\pi + c}) with (a = 3), (b = 2), (c = 6).
Thus (a + b + c = 3 + 2 + 6 = 11).

\boxed{11}

Reasoning Process

[THOUGHT] To solve the problem, we need to find the slope of the tangent to the curve CC at point PP where it intersects the line y=3x5ey = 3x - 5e. The parametric equations for CC are:

x=e4t(1+sin2πt),y=e4t(13cos2πt)x = e^{4t}(1 + \sin^2 \pi t), \quad y = e^{4t}(1 - 3\cos^2 \pi t)

First, we find the value of tt at the intersection point by solving y=3x5ey = 3x - 5e. Substituting the parametric forms:

e4t(13cos2πt)=3e4t(1+sin2πt)5ee^{4t}(1 - 3\cos^2 \pi t) = 3e^{4t}(1 + \sin^2 \pi t) - 5e

Simplifying leads to e4t=ee^{4t} = e, so t=14t = \frac{1}{4}.

Next, we compute the derivative dydx=dy/dtdx/dt\frac{dy}{dx} = \frac{dy/dt}{dx/dt} at t=14t = \frac{1}{4}. Using symbolic differentiation:

  • dxdt=e4t[4(1+sin2πt)+πsin2πt]\frac{dx}{dt} = e^{4t} \left[ 4(1 + \sin^2 \pi t) + \pi \sin 2\pi t \right]
  • dydt=e4t[4(13cos2πt)+3πsin2πt]\frac{dy}{dt} = e^{4t} \left[ 4(1 - 3\cos^2 \pi t) + 3\pi \sin 2\pi t \right]

At t=14t = \frac{1}{4}, sin(π/4)=cos(π/4)=22\sin(\pi/4) = \cos(\pi/4) = \frac{\sqrt{2}}{2}, so sin2(π/4)=cos2(π/4)=12\sin^2(\pi/4) = \cos^2(\pi/4) = \frac{1}{2}, and sin(π/2)=1\sin(\pi/2) = 1. Substituting these values:

  • dxdt=e(π+6)\frac{dx}{dt} = e(\pi + 6)
  • dydt=e(3π2)\frac{dy}{dt} = e(3\pi - 2)

Thus, the slope is:

dydx=3π2π+6\frac{dy}{dx} = \frac{3\pi - 2}{\pi + 6}

This matches the form aπbπ+c\frac{a\pi - b}{\pi + c} with a=3a = 3, b=2b = 2, c=6c = 6. Therefore, a+b+c=11a + b + c = 11.

[PYTHON] import math

Calculate the exact slope value numerically for verification

pi = math.pi t = 0.25

Compute sin(pit), cos(pit)

sin_pi_t = math.sin(pi * t) cos_pi_t = math.cos(pi * t) sin_sq = sin_pi_t ** 2 cos_sq = cos_pi_t ** 2

Compute dx/dt

exp_4t = math.exp(4 * t) dx_dt = exp_4t * (4 * (1 + sin_sq) + pi * math.sin(2 * pi * t))

Compute dy/dt

dy_dt = exp_4t * (4 * (1 - 3 * cos_sq) + 3 * pi * math.sin(2 * pi * t))

Slope dy/dx

slope = dy_dt / dx_dt

Exact expression (3π - 2)/(π + 6)

exact_slope = (3 * pi - 2) / (pi + 6)

print("Computed slope:", slope) print("Exact slope:", exact_slope) print("a=3, b=2, c=6, sum =", 3 + 2 + 6) [/PYTHON]

The output confirms the slope is indeed 3π2π+6\frac{3\pi - 2}{\pi + 6}, so a=3a = 3, b=2b = 2, c=6c = 6, and their sum is 1111.

\boxed{11}

Tool Output
[PYTHON OUTPUT] Computed slope: 0.8121974192159784 Exact slope: 0.8121974192159785 a=3, b=2, c=6, sum = 11 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output confirms that the slope is ( \frac{3\pi - 2}{\pi + 6} ), so ( a = 3 ), ( b = 2 ), ( c = 6 ), and ( a + b + c = 11 ). Therefore, the final answer is:

\boxed{11}

Final Model Output
11

Comparative Analysis (P41) (Average across runs)

Avg Time Taken

Solar-Open-100B
653.1
K-EXAONE-236B-A23B
200.2
Llama-VARCO-8B-Instruct
92.0
GPT-5.1 (high)
76.3
Deepseek-V3.2
73.2
Kanana-2-30B-Thinking
65.1
Gemini-3-Pro-Preview
52.1
HCX-007(high)
44.4
Solar-Pro-2 (31B)(high)
32.2
Kanana-2-30B-Thinking-2601
28.6
A.X-4.0 (72B)
26.2
K-EXAONE-236B-A23B
25.7
Grok-4.1-fast
24.4
Claude-Opus-4.5
20.1
GPT-5.2 (high)
17.0
axk1
6.6
EXAONE-4.0.1-32B (high)
5.9

Avg Token Usage

K-EXAONE-236B-A23B
23889.7
GPT-5.1 (high)
11773.0
Kanana-2-30B-Thinking
11479.0
Solar-Open-100B
10372.0
Kanana-2-30B-Thinking-2601
8281.0
Llama-VARCO-8B-Instruct
7592.0
Gemini-3-Pro-Preview
7354.0
Claude-Opus-4.5
7243.0
Solar-Pro-2 (31B)(high)
6628.0
K-EXAONE-236B-A23B
6032.0
Deepseek-V3.2
5861.0
HCX-007(high)
5058.0
Grok-4.1-fast
4639.0
EXAONE-4.0.1-32B (high)
3981.0
GPT-5.2 (high)
3631.0
axk1
2713.0
A.X-4.0 (72B)
2344.0