Problem Analysis #6

337.41s
39,953 toks
Problem Statement

\subsection*{I.}Find the general solution y(x)y(x) of the following differential equation:dydx=y(1y),\frac{dy}{dx} = y(1-y),where 0<y<10 < y < 1.\subsection*{II.}Find the value of the definite integralI=11arccos(x2)cos2(π3x)dx,I = \int_{-1}^{1} \frac{\arccos\left(\dfrac{x}{2}\right)}{\cos^2\left(\dfrac{\pi}{3}x\right)} \, dx,where 0 $$\leq$$ \arccos\left(\dfrac{x}{2}\right) $$\leq$$ $$\pi$$$.\subsection*{III.}For any positive variable x, define$$f(x) = \sum_{m=0}^{\infty} \frac{1}{(2m)!} x^{2m},\qquadg(x) = \frac{d}{dx} f(x).$$For any non-negative integer n$, defineIn(x)=0x(g(X)f(X))ndX.I_n(x) = \int_0^x \left(\frac{g(X)}{f(X)}\right)^n \, dX.You may useexp(x)=m=0xmm!.\exp(x) = \sum_{m=0}^{\infty} \frac{x^m}{m!}.

  • [(1)] Calculate f(x)2g(x)2f(x)^2 - g(x)^2.
  • [(2)] Express In+2(x)I_{n+2}(x) using In(x)I_n(x). \subsection*{IV. Final quantity}Let y(x)y_*(x) be the solution of the differential equation in {\rm I} that satisfiesy(0)=12,y_*(0) = \frac{1}{2},and definea:=y(ln3).a := y_*(\ln 3).In {\rm II}, let II be the value of the definite integral. In {\rm III}, letx0=ln(2+3),\qquadF0:=f(x0),G0:=g(x0).x_0 = \ln(2+\sqrt{3}),\qquadF_0 := f(x_0),\quad G_0 := g(x_0).DefineS:=4a+IG0+F0,K:=999S2+7.S := 4a + \frac{I}{G_0} + F_0,\qquad\mathcal{K} := 999\,S^2 + 7.Compute the integer K\mathcal{K}.\
Ground Truth
63943
Execution Trace
Reasoning Process

We are asked to solve a multi-part problem and ultimately compute K=999S2+7\mathcal{K}=999 S^2+7, where S=4a+IG0+F0S=4a+\frac{I}{G_0}+F_0, with aa, II, F0F_0, GNavier?G_ Navier? Actually F0=f(x0)F_0=f(x_0), G0=g(x0)G_0=g(x_0). We'll go step by step.


I. Differential equation and general solution

Solve dydx=y(1y)\frac{dy}{dx}=y(1-y), 0<y<10<y<1.

Separate variables: dyy(1y)=dx\frac{dy}{y(1-y)}=dx.
Partial fractions: 1y(1y)=1y+11y\frac{1}{y(1-y)}=\frac{1}{y}+\frac{1}{1-y}.
Integrate: lny1y=x+C\ln\left|\frac{y}{1-y}\right|=x+C     \implies y1y=Aex\frac{y}{1-y}=Ae^{x} (A>0A>0).
Thus y=Aex1+Aex=11+Bexy=\frac{Ae^{x}}{1+Ae^{x}}=\frac{1}{1+Be^{-x}} (with B=1/AB=1/A).
So the general solution is y=11+Cex\boxed{y=\frac{1}{1+Ce^{-x}}} (or equivalently y1y=Cex\frac{y}{1-y}=Ce^{x}).


II. Definite integral II

[ I = \int_{-1}^{1} \frac{\arccos(x/2)}{\cos^2\bigl(\frac{\pi}{3}x\bigr)},dx. ]

Let u=arccos(x/2)u=\arccos(x/2), dv=sec2(πx/3)dxdv=\sec^2(\pi x/3)\,dx. Then
du=121(x/2)2dxdu = -\frac{1}{2\sqrt{1-(x/2)^2}}\,dx,   v=3πtan(πx/3)\; v = \frac{3}{\pi}\tan(\pi x/3).

Integration by parts: [ I = \left[ u v \right]{-1}^{1} - \int{-1}^{1} v,du = \Big[ u v \Big|{-1}^{1} \Big] + \frac{3}{2\pi} \int{-1}^{1} \frac{\tan(\pi x/3)}{\sqrt{1-(x/2)^2}},dx. ]

Compute boundary term:

  • At x=1x=1: u(1)=arccos(1/2)=π/3u(1)=\arccos(1/2)=\pi/3, v(1)=3πtan(π/3)=33πv(1)=\frac{3}{\pi}\tan(\pi/3)=\frac{3\sqrt3}{\pi} \Rightarrow uv=π333π=3u v = \frac{\pi}{3}\cdot\frac{3\sqrt3}{\pi}= \sqrt3.
  • At x=1x=-1: u(1)=arccos(1/2)=2π/3u(-1)=\arccos(-1/2)=2\pi/3, v(1)=3πtan(π/3)=33πv(-1)=\frac{3}{\pi}\tan(-\pi/3)=-\frac{3\sqrt3}{\pi} \Rightarrow uv=2π3(33π)=23u v = \frac{2\pi}{3}\cdot\Big(-\frac{3\sqrt3}{\pi}\Big) = -2\sqrt3. Thus [uv]11=3(23)=33[u v]_{-1}^{1} = \sqrt3 - (-2\sqrt3) = 3\sqrt3.

The remaining integral is odd (since tan(πx/3)\tan(\pi x/3) is odd and 1(x/2)2\sqrt{1-(x/2)^2} is even) over [1,1][-1,1], so it vanishes. Hence [ I = 3\sqrt3. ]


III. Functions ff, gg and related integrals

Given [ f(x)=\sum_{m=0}^{\infty}\frac{1}{(2m)!}x^{2m}=\cosh x,\qquad g(x)=f'(x)=\sinh x. ]

(1) f(x)2g(x)2=cosh2xsinh2x=1f(x)^2-g(x)^2 = \cosh^2 x - \sinh^2 x = 1.

(2) Define In(x)=0x(g(X)f(X))ndX=0xtanhnXdXI_n(x)=\int_0^x \left(\frac{g(X)}{f(X)}\right)^n dX = \int_0^x \tanh^n X\,dX.
Using tanhn=tanhn2tanhn2sech2\tanh^n = \tanh^{n-2} - \tanh^{n-2}\operatorname{sech}^2, we obtain [ I_n(x) = I_{n-2}(x) - \frac{1}{n-1}\tanh^{n-1}(x). ] Shifting indices: In+2(x)=In(x)1n+1(g(x)f(x)) ⁣n+1I_{n+2}(x) = I_n(x) - \frac{1}{n+1}\left(\frac{g(x)}{f(x)}\right)^{\!n+1}.


IV. Final computation

  • y(x)y_*(x) solves dydx=y(1y)\frac{dy}{dx}=y(1-y) with y(0)=12y(0)=\frac12. From part I, y1y=ex\frac{y}{1-y}=e^x \Rightarrow y(x)=11+exy_*(x)=\frac{1}{1+e^{-x}}. Then [ a = y_*(\ln 3) = \frac{1}{1+e^{-\ln3}} = \frac{1}{1+\frac13} = \frac34. ]

  • For x0=ln(2+3)x_0 = \ln(2+\sqrt3), we compute [ f(x_0)=\cosh(\ln(2+\sqrt3)) = \frac{(2+\sqrt3)+(2-\sqrt3)}{2}=2,\qquad g(x_0)=\sinh(\ln(2+\sqrt3)) = \frac{(2+\sqrt3)-(2-\sqrt3)}{2}= \sqrt3. ] Thus F0=2F_0 = 2, G0=3G_0 = \sqrt3.

Now [ I = 3\sqrt3,\quad \frac{I}{G_0} = \frac{3\sqrt3}{\sqrt3}=3. ]

Hence [ S = 4a + \frac{I}{G_0} + F_0 = 4\cdot\frac34 + 3 + 2 = 3 + 3 + 2 = 8. ]

Finally, [ \mathcal{K} = 999 S^2 + 7 = 999\cdot 64 + 7 = 63936 + 7 = 63943. ]


[ \boxed{63943} ]

Reasoning Process

[THOUGHT] We need to compute the integer K=999S2+7\mathcal{K} = 999S^2 + 7 where S=4a+IG0+F0S = 4a + \frac{I}{G_0} + F_0.

  • a=y(ln3)a = y_*(\ln 3) from the differential equation dydx=y(1y)\frac{dy}{dx}=y(1-y) with y(0)=12y(0)=\frac12.
    The solution is y(x)=11+exy_*(x) = \frac{1}{1+e^{-x}}, so a=11+eln3=11+13=34a = \frac{1}{1+e^{-\ln 3}} = \frac{1}{1+\frac13} = \frac34.
  • I=11arccos(x/2)cos2(π3x)dxI = \int_{-1}^{1} \frac{\arccos(x/2)}{\cos^2\bigl(\frac{\pi}{3}x\bigr)}\,dx.
    Using integration by parts one finds I=33I = 3\sqrt{3} (verified numerically below).
  • x0=ln(2+3)x_0 = \ln(2+\sqrt{3}), F0=f(x0)=coshx0F_0 = f(x_0) = \cosh x_0, G0=g(x0)=sinhx0G_0 = g(x_0) = \sinh x_0.
    Exact values: cosh(ln(2+3))=2\cosh(\ln(2+\sqrt{3})) = 2, sinh(ln(2+3))=3\sinh(\ln(2+\sqrt{3})) = \sqrt{3}.

Thus S=434+333+2=3+3+2=8S = 4\cdot\frac34 + \frac{3\sqrt{3}}{\sqrt{3}} + 2 = 3 + 3 + 2 = 8, and K=99982+7=63943\mathcal{K} = 999\cdot 8^2 + 7 = 63943.

To verify the intermediate values numerically, we use Python.

[PYTHON] import math from scipy.integrate import quad

Part I: a

a = 3/4

Part II: I

def integrand(x): return math.acos(x/2) / (math.cos(math.pi * x / 3) ** 2)

I_val, err = quad(integrand, -1, 1) print(f"I = {I_val}")

Part III: x0, F0, G0

x0 = math.log(2 + math.sqrt(3)) F0 = math.cosh(x0) G0 = math.sinh(x0) print(f"F0 = {F0}, G0 = {G0}")

S = 4*a + I_val/G0 + F0 print(f"S = {S}")

K = 999 * S**2 + 7 print(f"K = {K}")

Exact checks

print(f"Exact S = 8") print(f"Exact K = {999*64 + 7}") [/PYTHON]

\boxed{63943}

Tool Output
[PYTHON OUTPUT] I = 5.196152422706632 F0 = 1.9999999999999998, G0 = 1.732050807568877 S = 8.0 K = 63943.0 Exact S = 8 Exact K = 63943 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The problem involves multiple steps, primarily focused on computing a final value of K=999S2+7\mathcal{K} = 999S^2 + 7, where S = 4a + \. We need to compute:

  • a=y(ln3)a = y_*(\ln 3), with y(x)y_*(x) being the specific solution to dydx=y(1y)\frac{dy}{dx} = y(1-y) satisfying y(0)=12y(0) = \frac{1}{2}.
  • I=11arccos(x/2)cos2(πx/3)dxI = \int_{-1}^{1} \frac{\arccos(x/2)}{\cos^2(\pi x/3)}\,dx,
  • F0=f(x0)F_0 = f(x_0), G0=g(x0)G_0 = g(x_0), where f(x)=m=0x2m(2m)!f(x) = \sum_{m=0}^\infty \frac{x^{2m}}{(2m)!}, g(x)=f(x)g(x) = f'(x), and x0=ln(2+3)x_0 = \ln(2 + \sqrt{3}).

From earlier analysis:

  • The general solution to dydx=y(1y)\frac{dy}{dx} = y(1-y) is y=11+Cexy = \frac{1}{1 + Ce^{-x}}. Using y(0)=12y(0) = \frac{1}{2}, we find C=1C = 1, so y(x)=11+exy_*(x) = \frac{1}{1 + e^{-x}}, hence a=y(ln3)=34a = y_*(\ln 3) = \frac{3}{4}.
  • The integral II was evaluated via integration by parts and symmetry, yielding I=33I = 3\sqrt{3}.
  • f(x)=coshxf(x) = \cosh x, g(x)=sinhxg(x) = \sinh x, so F0=cosh(x0)F_0 = \cosh(x_0), G0=sinh(x0)G_0 = \sinh(x_0). With x0=ln(2+3)x_0 = \ln(2 + \sqrt{3}), we find F0=2F_0 = 2, G0=3G_0 = \sqrt{3}.

Thus:

S = 4 \cdot \frac{3}{4} + \ I / G_0\ } + F_0 = 3 + \frac{3\sqrt{3}}{\sqrt{3}} + 2 = 8.

Finally, K=99982+7=63943\mathcal{K} = 999 \cdot 8^2 + 7 = 63943.

To verify, we use Python to numerically compute the integral and confirm the values of F0F_0, G0G_0, and SS.

[PYTHON] import math from scipy.integrate import quad

Compute integral I

def integrand(x): return math.acos(x / 2) / (math.cos(math.pi * x / 3) ** 2)

I_val, err = quad(integrand, -1, 1) print(f"I = {I_val}")

Compute F0 and G0

x0 = math.log(2 + math.sqrt(3)) F0 = math.cosh(x0) G0 = math.sinh(x0) print(f"F0 = {F0}, G0 = {G0}")

Compute S

a = 3/4 S = 4*a + I_val/G0 + F0 print(f"S = {S}")

Compute K

K = 999 * S**2 + 7 print(f"K = {K}") [/PYTHON]

[OUTCOME] I = 5.196152422706632 F0 = 1.9999999999999998, G0 = 1.732050807568877 S = 8.0 K = 63943.0 [REASONING] The Python output confirms:

  • I335.19615I \approx 3\sqrt{3} \approx 5.19615,
  • F02F_0 \approx 2, G031.73205G_0 \approx \sqrt{3} \approx 1.73205,
  • S=8.0S = 8.0, so K=99964+7=63943\mathcal{K} = 999 \cdot 64 + 7 = 63943.

Thus, the integer K\mathcal{K} is exactly 63943. </think>

63943

Tool Output
[PYTHON OUTPUT] I = 5.196152422706632 F0 = 1.9999999999999998, G0 = 1.732050807568877 S = 8.0 K = 63943.0 [/PYTHON OUTPUT]
Reasoning Process

I've computed the values from the Python output:

  • ( I = 3\sqrt{3} \approx 5.196152422706632 )
  • ( F_0 = 2 )
  • ( G_0 = \sqrt{3} \approx 1.732050807568877 )
  • ( S = 4a + \frac{I}{G_0} + F_0 = 8 )
  • ( \mathcal{K} = 999 \times 8^2 + 7 = 63943 )

Thus the final answer is:

\boxed{63943}

Final Model Output
63943

Comparative Analysis (P6) (Average across runs)

Avg Time Taken

K-EXAONE-236B-A23B
330.0
GPT-5.2 (high)
111.5
Kanana-2-30B-Thinking-2601
76.9
Solar-Open-100B
67.2
GPT-5.1 (high)
57.7
HCX-007(high)
55.6
Llama-VARCO-8B-Instruct
54.7
Deepseek-V3.2
48.3
Gemini-3-Pro-Preview
47.6
A.X-4.0 (72B)
45.4
Kanana-2-30B-Thinking
42.7
Solar-Pro-2 (31B)(high)
40.2
Grok-4.1-fast
29.0
K-EXAONE-236B-A23B
22.8
Claude-Opus-4.5
20.6
axk1
12.9
EXAONE-4.0.1-32B (high)
11.1

Avg Token Usage

K-EXAONE-236B-A23B
39933.0
GPT-5.2 (high)
26193.0
Kanana-2-30B-Thinking-2601
19787.0
Solar-Open-100B
12619.0
HCX-007(high)
10581.0
EXAONE-4.0.1-32B (high)
9149.0
Solar-Pro-2 (31B)(high)
9027.0
GPT-5.1 (high)
8547.0
Grok-4.1-fast
8351.0
Kanana-2-30B-Thinking
8050.0
Gemini-3-Pro-Preview
7889.0
A.X-4.0 (72B)
7410.0
K-EXAONE-236B-A23B
6804.0
Claude-Opus-4.5
5887.0
Deepseek-V3.2
5395.0
axk1
4182.0
Llama-VARCO-8B-Instruct
1716.0