\subsection*{I.}Find the general solution of the following differential equation:where .\subsection*{II.}Find the value of the definite integralwhere 0 $$\leq$$ \arccos\left(\dfrac{x}{2}\right) $$\leq$$ $$\pi$$$.\subsection*{III.}For any positive variable x, define$$f(x) = \sum_{m=0}^{\infty} \frac{1}{(2m)!} x^{2m},\qquadg(x) = \frac{d}{dx} f(x).$$For any non-negative integer n$, defineYou may use
- [(1)] Calculate .
- [(2)] Express using . \subsection*{IV. Final quantity}Let be the solution of the differential equation in {\rm I} that satisfiesand defineIn {\rm II}, let be the value of the definite integral. In {\rm III}, letDefineCompute the integer .\
We are asked to solve a multi-part problem and ultimately compute , where , with , , , Actually , . We'll go step by step.
I. Differential equation and general solution
Solve , .
Separate variables: .
Partial fractions: .
Integrate: ().
Thus (with ).
So the general solution is (or equivalently ).
II. Definite integral
[ I = \int_{-1}^{1} \frac{\arccos(x/2)}{\cos^2\bigl(\frac{\pi}{3}x\bigr)},dx. ]
Let , . Then
, .
Integration by parts: [ I = \left[ u v \right]{-1}^{1} - \int{-1}^{1} v,du = \Big[ u v \Big|{-1}^{1} \Big] + \frac{3}{2\pi} \int{-1}^{1} \frac{\tan(\pi x/3)}{\sqrt{1-(x/2)^2}},dx. ]
Compute boundary term:
- At : , .
- At : , . Thus .
The remaining integral is odd (since is odd and is even) over , so it vanishes. Hence [ I = 3\sqrt3. ]
III. Functions , and related integrals
Given [ f(x)=\sum_{m=0}^{\infty}\frac{1}{(2m)!}x^{2m}=\cosh x,\qquad g(x)=f'(x)=\sinh x. ]
(1) .
(2) Define .
Using , we obtain
[
I_n(x) = I_{n-2}(x) - \frac{1}{n-1}\tanh^{n-1}(x).
]
Shifting indices: .
IV. Final computation
-
solves with . From part I, . Then [ a = y_*(\ln 3) = \frac{1}{1+e^{-\ln3}} = \frac{1}{1+\frac13} = \frac34. ]
-
For , we compute [ f(x_0)=\cosh(\ln(2+\sqrt3)) = \frac{(2+\sqrt3)+(2-\sqrt3)}{2}=2,\qquad g(x_0)=\sinh(\ln(2+\sqrt3)) = \frac{(2+\sqrt3)-(2-\sqrt3)}{2}= \sqrt3. ] Thus , .
Now [ I = 3\sqrt3,\quad \frac{I}{G_0} = \frac{3\sqrt3}{\sqrt3}=3. ]
Hence [ S = 4a + \frac{I}{G_0} + F_0 = 4\cdot\frac34 + 3 + 2 = 3 + 3 + 2 = 8. ]
Finally, [ \mathcal{K} = 999 S^2 + 7 = 999\cdot 64 + 7 = 63936 + 7 = 63943. ]
[ \boxed{63943} ]
[THOUGHT] We need to compute the integer where .
- from the differential equation with .
The solution is , so . - .
Using integration by parts one finds (verified numerically below). - , , .
Exact values: , .
Thus , and .
To verify the intermediate values numerically, we use Python.
[PYTHON] import math from scipy.integrate import quad
Part I: a
a = 3/4
Part II: I
def integrand(x): return math.acos(x/2) / (math.cos(math.pi * x / 3) ** 2)
I_val, err = quad(integrand, -1, 1) print(f"I = {I_val}")
Part III: x0, F0, G0
x0 = math.log(2 + math.sqrt(3)) F0 = math.cosh(x0) G0 = math.sinh(x0) print(f"F0 = {F0}, G0 = {G0}")
S = 4*a + I_val/G0 + F0 print(f"S = {S}")
K = 999 * S**2 + 7 print(f"K = {K}")
Exact checks
print(f"Exact S = 8") print(f"Exact K = {999*64 + 7}") [/PYTHON]
\boxed{63943}
[THOUGHT] The problem involves multiple steps, primarily focused on computing a final value of , where S = 4a + \. We need to compute:
- , with being the specific solution to satisfying .
- ,
- , , where , , and .
From earlier analysis:
- The general solution to is . Using , we find , so , hence .
- The integral was evaluated via integration by parts and symmetry, yielding .
- , , so , . With , we find , .
Thus:
S = 4 \cdot \frac{3}{4} + \ I / G_0\ } + F_0 = 3 + \frac{3\sqrt{3}}{\sqrt{3}} + 2 = 8.Finally, .
To verify, we use Python to numerically compute the integral and confirm the values of , , and .
[PYTHON] import math from scipy.integrate import quad
Compute integral I
def integrand(x): return math.acos(x / 2) / (math.cos(math.pi * x / 3) ** 2)
I_val, err = quad(integrand, -1, 1) print(f"I = {I_val}")
Compute F0 and G0
x0 = math.log(2 + math.sqrt(3)) F0 = math.cosh(x0) G0 = math.sinh(x0) print(f"F0 = {F0}, G0 = {G0}")
Compute S
a = 3/4 S = 4*a + I_val/G0 + F0 print(f"S = {S}")
Compute K
K = 999 * S**2 + 7 print(f"K = {K}") [/PYTHON]
[OUTCOME] I = 5.196152422706632 F0 = 1.9999999999999998, G0 = 1.732050807568877 S = 8.0 K = 63943.0 [REASONING] The Python output confirms:
- ,
- , ,
- , so .
Thus, the integer is exactly 63943. </think>
63943
I've computed the values from the Python output:
- ( I = 3\sqrt{3} \approx 5.196152422706632 )
- ( F_0 = 2 )
- ( G_0 = \sqrt{3} \approx 1.732050807568877 )
- ( S = 4a + \frac{I}{G_0} + F_0 = 8 )
- ( \mathcal{K} = 999 \times 8^2 + 7 = 63943 )
Thus the final answer is:
\boxed{63943}