Let a function defined on the set of all real numbers satisfyandConsider the region enclosed by the curve , the line and the two vertical lines and .The area of this region is equal tofor some rational numbers .Find the value of 2028 $$\cdot$$ p $$\cdot$$ q $$\cdot$$ r.oindent
[THOUGHT] Let me analyze this problem step by step.
First, I need to understand the function f(x):
- For x ∈ [0,2]: f(x) = x·sin(πx)
- For all x: f(x) = 2·f(x-2)
This means:
- f(x) for x ∈ [2,4] = 2·f(x-2) where (x-2) ∈ [0,2]
- f(x) for x ∈ [4,6] = 2·f(x-2) = 2·2·f(x-4) = 4·f(x-4)
- In general, for x ∈ [2n, 2n+2]: f(x) = 2^n · f(x-2n)
For x ∈ [2026, 2027]:
- 2026 = 2·1013, so n = 1013
- f(x) = 2^1013 · f(x - 2026) for x ∈ [2026, 2028]
- For x ∈ [2026, 2027], we have (x-2026) ∈ [0, 1]
- So f(x) = 2^1013 · (x-2026)·sin(π(x-2026))
Let me substitute t = x - 2026, so t ∈ [0, 1]:
- f(x) = 2^1013 · t·sin(πt)
- The line y = 2^1012·(x - 2026) = 2^1012·t
The area between the curve and the line from t = 0 to t = 1: Area = ∫₀¹ |2^1013·t·sin(πt) - 2^1012·t| dt
Let me factor out 2^1012: Area = 2^1012 · ∫₀¹ |2t·sin(πt) - t| dt = 2^1012 · ∫₀¹ |t(2sin(πt) - 1)| dt
I need to find where 2sin(πt) - 1 = 0, i.e., sin(πt) = 1/2. For t ∈ [0,1]: πt = π/6 or πt = 5π/6 So t = 1/6 or t = 5/6.
For t ∈ [0, 1/6]: sin(πt) ranges from 0 to 1/2, so 2sin(πt) - 1 < 0 For t ∈ [1/6, 5/6]: 2sin(πt) - 1 ≥ 0 For t ∈ [5/6, 1]: 2sin(πt) - 1 < 0
Let me compute the integrals. [/THOUGHT] [PYTHON] from sympy import *
t = symbols('t')
The integrand is t*(2sin(pit) - 1)
integrand = t * (2sin(pit) - 1)
Compute the integral in three parts
Part 1: t in [0, 1/6], integrand is negative
I1 = integrate(integrand, (t, 0, Rational(1,6))) print(f"I1 (from 0 to 1/6): {I1}") print(f"I1 simplified: {simplify(I1)}")
Part 2: t in [1/6, 5/6], integrand is positive
I2 = integrate(integrand, (t, Rational(1,6), Rational(5,6))) print(f"I2 (from 1/6 to 5/6): {I2}") print(f"I2 simplified: {simplify(I2)}")
Part 3: t in [5/6, 1], integrand is negative
I3 = integrate(integrand, (t, Rational(5,6), 1)) print(f"I3 (from 5/6 to 1): {I3}") print(f"I3 simplified: {simplify(I3)}")
The area is -I1 + I2 - I3 (taking absolute values)
area_factor = -I1 + I2 - I3 print(f"\nArea factor (before 2^1012): {area_factor}") print(f"Area factor simplified: {simplify(area_factor)}") [/PYTHON]
[THOUGHT] Let me verify the calculation. The area factor is: -I1 + I2 - I3
From the output:
- I1 = -√3/(6π) - 1/72 + 1/π²
- I2 = -1/3 + √3/π
- I3 = -5√3/(6π) - 11/72 - 1/π² + 2/π
Area factor = -I1 + I2 - I3 = -(-√3/(6π) - 1/72 + 1/π²) + (-1/3 + √3/π) - (-5√3/(6π) - 11/72 - 1/π² + 2/π) = √3/(6π) + 1/72 - 1/π² - 1/3 + √3/π + 5√3/(6π) + 11/72 + 1/π² - 2/π = (√3/(6π) + √3/π + 5√3/(6π)) + (1/72 + 11/72 - 1/3) + (-1/π² + 1/π²) + (-2/π) = (√3/(6π) + 6√3/(6π) + 5√3/(6π)) + (12/72 - 24/72) + 0 - 2/π = 12√3/(6π) + (-12/72) - 2/π = 2√3/π - 1/6 - 2/π
The simplified form is: -1/6 - 2/π + 2√3/π
So the area is 2^1012 · (p + q/π + r√3/π) where:
- p = -1/6
- q = -2
- r = 2
Let me verify: p + q/π + r√3/π = -1/6 + (-2)/π + 2√3/π = -1/6 - 2/π + 2√3/π ✓
Now compute 2028 · p · q · r: 2028 · (-1/6) · (-2) · 2 = 2028 · (1/6) · 4 = 2028 · 4/6 = 2028 · 2/3 = 4056/3 = 1352 [/THOUGHT]
\boxed{1352}