Problem Analysis #4

52.55s
9,408 toks
Problem Statement

Consider a function f(t)f(t) of a real variable tt, where f(t)|f(t)| and f(t)2|f(t)|^2 are integrable. Let F(ω)=F[f(t)]F(\omega) = \mathcal{F}[f(t)] denote the Fourier transform of f(t)f(t):F(ω)=F[f(t)]=f(t)eiωtdt,F(\omega) = \mathcal{F}[f(t)]= \int_{-\infty}^{\infty} f(t)\,e^{-i\omega t}\,dt,where ω\omega is a real number and ii is the imaginary unit. Assume the following identity holds:F(ω)2dω=2πf(t)2dt.\int_{-\infty}^{\infty} |F(\omega)|^2\,d\omega= 2\pi \int_{-\infty}^{\infty} |f(t)|^2\,dt.Let Rf(τ)R_f(\tau) denote the autocorrelation function of f(t)f(t):Rf(τ)=f(t)f(tτ)dt,R_f(\tau) = \int_{-\infty}^{\infty} f(t)\,f(t-\tau)\,dt,where τ\tau is a real number.\subsection*{I.}Consider the case where f(t)f(t) is defined byf(t)={cos(at)(tπ2a),0(t>π2a),f(t) =\begin{cases}\cos(at) & (|t| \le \dfrac{\pi}{2a}),\\[1mm]0 & (|t| > \dfrac{\pi}{2a}),\end{cases}where aa is a positive real constant. Find the following:

  • [(1)] The Fourier transform F(ω)F(\omega).

  • [(2)] The autocorrelation function Rf(τ)R_f(\tau).

  • [(3)] The Fourier transform F[Rf(τ)]\mathcal{F}[R_f(\tau)]. \subsection*{II.}Using the results of I, evaluate the following integrals:

  • [(1)] cos2 ⁣(πx2)(x21)2dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^2\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^2}\,dx,

  • [(2)] cos4 ⁣(πx2)(x21)4dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^4\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^4}\,dx. Let AA denote the value obtained in {\rm II(1)}, and let BB denote the value obtained in {\rm II(2)}. In addition, for the case a=1a=1 in I, let F(0)F(0) be the value of the Fourier transform in {\rm I(1)} at ω=0\omega=0.DefineK=37(F(0))4+999(96B16A230A)+123456.\mathcal{K}= 37\bigl(F(0)\bigr)^4+ 999\bigl(96B - 16A^2 - 30A\bigr)+ 123456.Compute the integer K\mathcal{K}.\

Ground Truth
124048
Execution Trace
Reasoning Process

[THOUGHT] Let me work through this problem step by step.

Part I:

For f(t)=cos(at)f(t) = \cos(at) when tπ2a|t| \le \frac{\pi}{2a} and 00 otherwise.

(1) Fourier Transform F(ω)F(\omega):

F(ω)=π/(2a)π/(2a)cos(at)eiωtdtF(\omega) = \int_{-\pi/(2a)}^{\pi/(2a)} \cos(at) e^{-i\omega t} dt

Using cos(at)=eiat+eiat2\cos(at) = \frac{e^{iat} + e^{-iat}}{2}:

F(ω)=12π/(2a)π/(2a)(ei(aω)t+ei(a+ω)t)dtF(\omega) = \frac{1}{2} \int_{-\pi/(2a)}^{\pi/(2a)} (e^{i(a-\omega)t} + e^{-i(a+\omega)t}) dt

=12[ei(aω)ti(aω)+ei(a+ω)ti(a+ω)]π/(2a)π/(2a)= \frac{1}{2} \left[ \frac{e^{i(a-\omega)t}}{i(a-\omega)} + \frac{e^{-i(a+\omega)t}}{-i(a+\omega)} \right]_{-\pi/(2a)}^{\pi/(2a)}

=sin((aω)π/(2a))aω+sin((a+ω)π/(2a))a+ω= \frac{\sin((a-\omega)\pi/(2a))}{a-\omega} + \frac{\sin((a+\omega)\pi/(2a))}{a+\omega}

Let me simplify: sin((aω)π2a)=sin(π2ωπ2a)=cos(ωπ2a)\sin((a-\omega)\frac{\pi}{2a}) = \sin(\frac{\pi}{2} - \frac{\omega\pi}{2a}) = \cos(\frac{\omega\pi}{2a})

Similarly: sin((a+ω)π2a)=sin(π2+ωπ2a)=cos(ωπ2a)\sin((a+\omega)\frac{\pi}{2a}) = \sin(\frac{\pi}{2} + \frac{\omega\pi}{2a}) = \cos(\frac{\omega\pi}{2a})

So F(ω)=cos(ωπ2a)(1aω+1a+ω)=cos(ωπ2a)2aa2ω2F(\omega) = \cos(\frac{\omega\pi}{2a}) \left( \frac{1}{a-\omega} + \frac{1}{a+\omega} \right) = \cos(\frac{\omega\pi}{2a}) \cdot \frac{2a}{a^2 - \omega^2}

F(ω)=2acos(ωπ2a)a2ω2F(\omega) = \frac{2a \cos(\frac{\omega\pi}{2a})}{a^2 - \omega^2}

For a=1a=1: F(ω)=2cos(ωπ2)1ω2F(\omega) = \frac{2\cos(\frac{\omega\pi}{2})}{1 - \omega^2}

F(0)=2F(0) = 2

(2) Autocorrelation Rf(τ)R_f(\tau):

This is the convolution of f(t)f(t) with f(t)f(-t). Since f(t)f(t) is even, Rf(τ)=(ff)(τ)R_f(\tau) = (f * f)(\tau).

(3) Fourier Transform of Rf(τ)R_f(\tau):

F[Rf(τ)]=F(ω)2\mathcal{F}[R_f(\tau)] = |F(\omega)|^2

Part II:

For a=1a=1: F(ω)2=4cos2(ωπ2)(1ω2)2|F(\omega)|^2 = \frac{4\cos^2(\frac{\omega\pi}{2})}{(1-\omega^2)^2}

Using Parseval's theorem: F(ω)2dω=2πf(t)2dt\int_{-\infty}^{\infty} |F(\omega)|^2 d\omega = 2\pi \int_{-\infty}^{\infty} |f(t)|^2 dt

Let me compute the integrals using Python. [/THOUGHT] [PYTHON] import sympy as sp from sympy import symbols, cos, sin, pi, integrate, oo, Rational, simplify, sqrt

Part I with a=1

a = 1 t, tau, omega, x = symbols('t tau omega x', real=True)

(1) F(omega) for a=1

F(omega) = 2cos(omegapi/2) / (1 - omega^2)

F(0) = 2

F_0 = 2 print(f"F(0) = {F_0}")

Part II(1): Integral of cos^2(pi*x/2) / (x^2-1)^2 dx from -inf to inf

This is related to |F(omega)|^2 / 4 with omega = x

Using Parseval: integral |F(omega)|^2 d_omega = 2*pi * integral |f(t)|^2 dt

|f(t)|^2 = cos^2(t) for |t| <= pi/2, 0 otherwise

integral of cos^2(t) from -pi/2 to pi/2

int_f_squared = integrate(cos(t)**2, (t, -pi/2, pi/2)) print(f"Integral of |f(t)|^2 = {int_f_squared}")

So integral |F(omega)|^2 d_omega = 2*pi * (pi/2) = pi^2

int_F_squared = 2 * pi * int_f_squared print(f"Integral of |F(omega)|^2 = {int_F_squared}")

|F(omega)|^2 = 4cos^2(omegapi/2) / (1-omega^2)^2

So integral of 4cos^2(omegapi/2) / (omega^2-1)^2 d_omega = pi^2

Note: (1-omega^2)^2 = (omega^2-1)^2

Therefore: integral of cos^2(pi*x/2) / (x^2-1)^2 dx = pi^2 / 4

A = pi**2 / 4 print(f"A = {A}")

Part II(2): Integral of cos^4(pi*x/2) / (x^2-1)^4 dx

This relates to |F(omega)|^4 / 16

We need integral of |F(omega)|^4 d_omega

|F(omega)|^4 = |F(omega)|^2 * |F(omega)|^2

By Parseval on R_f: integral |F[R_f]|^2 d_omega = 2*pi * integral |R_f(tau)|^2 d_tau

And F[R_f] = |F(omega)|^2

So integral |F(omega)|^4 d_omega = 2*pi * integral |R_f(tau)|^2 d_tau

R_f(tau) = integral f(t) f(t-tau) dt

For f(t) = cos(t) on [-pi/2, pi/2], this is the convolution

Let me compute R_f(tau) directly

The support of R_f is [-pi, pi] (since support of f is [-pi/2, pi/2])

For |tau| <= pi, R_f(tau) = integral of cos(t)*cos(t-tau) dt over the overlap region

Actually, let me compute this more carefully

f(t) is nonzero for t in [-pi/2, pi/2]

f(t-tau) is nonzero for t-tau in [-pi/2, pi/2], i.e., t in [tau-pi/2, tau+pi/2]

For tau >= 0:

Overlap is [max(-pi/2, tau-pi/2), min(pi/2, tau+pi/2)]

For 0 <= tau <= pi: overlap is [tau-pi/2, pi/2] if tau <= pi/2, else [tau-pi/2, pi/2] ...

Let me just compute numerically first

import numpy as np from scipy import integrate as sci_integrate

def f_func(t): return np.cos(t) * (np.abs(t) <= np.pi/2)

def R_f_func(tau): def integrand(t): return f_func(t) * f_func(t - tau) result, _ = sci_integrate.quad(integrand, -np.pi, np.pi) return result

Compute integral of R_f(tau)^2

def R_f_squared(tau): return R_f_func(tau)**2

int_R_f_squared, _ = sci_integrate.quad(R_f_squared, -np.pi, np.pi) print(f"Integral of R_f(tau)^2 = {int_R_f_squared}")

integral |F(omega)|^4 d_omega = 2*pi * int_R_f_squared

int_F_fourth = 2 * np.pi * int_R_f_squared print(f"Integral of |F(omega)|^4 = {int_F_fourth}")

|F(omega)|^4 = 16 * cos^4(omega*pi/2) / (omega^2-1)^4

So integral of cos^4(pi*x/2) / (x^2-1)^4 dx = int_F_fourth / 16

B_numerical = int_F_fourth / 16 print(f"B (numerical) = {B_numerical}")

Let me try to get exact value

R_f(tau) for f(t) = cos(t) on [-pi/2, pi/2]

[/PYTHON]

Tool Output
[PYTHON OUTPUT] F(0) = 2 Integral of |f(t)|^2 = pi/2 Integral of |F(omega)|^2 = pi**2 A = pi**2/4 Integral of R_f(tau)^2 = 4.547351428534134 Integral of |F(omega)|^4 = 28.571851682347774 B (numerical) = 1.7857407301467358 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Let me compute the exact values symbolically. I need to find the exact value of B.

For the autocorrelation Rf(τ)R_f(\tau), I need to compute it analytically. Let me work this out:

For f(t)=cos(t)f(t) = \cos(t) on [π/2,π/2][-\pi/2, \pi/2]:

Rf(τ)=f(t)f(tτ)dtR_f(\tau) = \int f(t) f(t-\tau) dt

For 0τπ0 \leq \tau \leq \pi, the overlap region is [τπ/2,π/2][\tau - \pi/2, \pi/2]:

Rf(τ)=τπ/2π/2cos(t)cos(tτ)dtR_f(\tau) = \int_{\tau-\pi/2}^{\pi/2} \cos(t)\cos(t-\tau) dt

Using cos(t)cos(tτ)=12[cos(τ)+cos(2tτ)]\cos(t)\cos(t-\tau) = \frac{1}{2}[\cos(\tau) + \cos(2t-\tau)]:

Rf(τ)=12τπ/2π/2[cos(τ)+cos(2tτ)]dtR_f(\tau) = \frac{1}{2}\int_{\tau-\pi/2}^{\pi/2} [\cos(\tau) + \cos(2t-\tau)] dt

=12[cos(τ)(πτ)+12sin(2tτ)τπ/2π/2]= \frac{1}{2}[\cos(\tau)(\pi - \tau) + \frac{1}{2}\sin(2t-\tau)|_{\tau-\pi/2}^{\pi/2}]

=12[cos(τ)(πτ)+12(sin(πτ)sin(τπ))]= \frac{1}{2}[\cos(\tau)(\pi - \tau) + \frac{1}{2}(\sin(\pi-\tau) - \sin(\tau - \pi))]

=12[cos(τ)(πτ)+sin(τ)]= \frac{1}{2}[\cos(\tau)(\pi - \tau) + \sin(\tau)]

So Rf(τ)=(πτ)cos(τ)+sin(τ)2R_f(\tau) = \frac{(\pi-\tau)\cos(\tau) + \sin(\tau)}{2} for 0τπ0 \leq \tau \leq \pi.

By symmetry, Rf(τ)=Rf(τ)R_f(\tau) = R_f(-\tau).

Now I need ππRf(τ)2dτ=20πRf(τ)2dτ\int_{-\pi}^{\pi} R_f(\tau)^2 d\tau = 2\int_0^{\pi} R_f(\tau)^2 d\tau

=20π[(πτ)cos(τ)+sin(τ)]24dτ= 2\int_0^{\pi} \frac{[(\pi-\tau)\cos(\tau) + \sin(\tau)]^2}{4} d\tau

=120π[(πτ)cos(τ)+sin(τ)]2dτ= \frac{1}{2}\int_0^{\pi} [(\pi-\tau)\cos(\tau) + \sin(\tau)]^2 d\tau

The numerical value was approximately 4.547, and 3π216+π41.85+0.7852.64\frac{3\pi^2}{16} + \frac{\pi}{4} \approx 1.85 + 0.785 \approx 2.64, which doesn't match.

Let me trust the numerical computation:

  • A=π2/4A = \pi^2/4
  • B1.7857...B \approx 1.7857...

Looking at B=3π2+816ππ=3π2+816B = \frac{3\pi^2 + 8}{16\pi} \cdot \pi = \frac{3\pi^2 + 8}{16}? Let me check: (3π2+8)/16(29.6+8)/162.35(3\pi^2 + 8)/16 \approx (29.6 + 8)/16 \approx 2.35. Not quite.

Actually, from the numerical: B1.7857528π2B \approx 1.7857 \approx \frac{5}{28} \cdot \pi^2? Let's see: π2/161.81.11\pi^2/16 \cdot 1.8 \approx 1.11.

Let me check if B=5π228B = \frac{5\pi^2}{28}: 5×9.87/281.765 \times 9.87/28 \approx 1.76. Close!

Or B=9π216×3.11.78B = \frac{9\pi^2}{16 \times 3.1} \approx 1.78.

Actually B=9π216×π=9π161.767B = \frac{9\pi^2}{16 \times \pi} = \frac{9\pi}{16} \approx 1.767. Very close!

Let me compute K\mathcal{K}:

  • F(0)=2F(0) = 2, so (F(0))4=16(F(0))^4 = 16
  • A=π2/4A = \pi^2/4
  • B1.7857B \approx 1.7857 (let me use the numerical value)

K=37×16+999(96B16A230A)+123456\mathcal{K} = 37 \times 16 + 999(96B - 16A^2 - 30A) + 123456

=592+999(96×1.785716×(π2/4)230×π2/4)+123456= 592 + 999(96 \times 1.7857 - 16 \times (\pi^2/4)^2 - 30 \times \pi^2/4) + 123456

=592+999(171.4316×π4/167.5π2)+123456= 592 + 999(171.43 - 16 \times \pi^4/16 - 7.5\pi^2) + 123456

=592+999(171.43π47.5π2)+123456= 592 + 999(171.43 - \pi^4 - 7.5\pi^2) + 123456

=592+999(171.4397.4174.02)+123456= 592 + 999(171.43 - 97.41 - 74.02) + 123456

=592+999×0+123456=124048= 592 + 999 \times 0 + 123456 = 124048

So K=124048\mathcal{K} = 124048. [/THOUGHT]

\boxed{124048}

Final Model Output
124048

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
414.5
Gemini-3-Pro-Preview
235.9
Deepseek-V3.2
172.0
Solar-Pro-2 (31B)(high)
168.4
Llama-VARCO-8B-Instruct
128.4
A.X-4.0 (72B)
124.6
Grok-4.1-fast
63.1
Claude-Opus-4.5
52.5
HCX-007(high)
32.4
EXAONE-4.0.1-32B (high)
9.1

Avg Token Usage

Solar-Pro-2 (31B)(high)
22565.0
GPT-5.1 (high)
18561.0
Deepseek-V3.2
17612.0
Grok-4.1-fast
13781.0
Gemini-3-Pro-Preview
12183.0
Claude-Opus-4.5
9408.0
A.X-4.0 (72B)
9126.0
Llama-VARCO-8B-Instruct
8388.0
EXAONE-4.0.1-32B (high)
5657.0
HCX-007(high)
5162.0