Problem Analysis #6

20.64s
5,887 toks
Problem Statement

\subsection*{I.}Find the general solution y(x)y(x) of the following differential equation:dydx=y(1y),\frac{dy}{dx} = y(1-y),where 0<y<10 < y < 1.\subsection*{II.}Find the value of the definite integralI=11arccos(x2)cos2(π3x)dx,I = \int_{-1}^{1} \frac{\arccos\left(\dfrac{x}{2}\right)}{\cos^2\left(\dfrac{\pi}{3}x\right)} \, dx,where 0 $$\leq$$ \arccos\left(\dfrac{x}{2}\right) $$\leq$$ $$\pi$$$.\subsection*{III.}For any positive variable x, define$$f(x) = \sum_{m=0}^{\infty} \frac{1}{(2m)!} x^{2m},\qquadg(x) = \frac{d}{dx} f(x).$$For any non-negative integer n$, defineIn(x)=0x(g(X)f(X))ndX.I_n(x) = \int_0^x \left(\frac{g(X)}{f(X)}\right)^n \, dX.You may useexp(x)=m=0xmm!.\exp(x) = \sum_{m=0}^{\infty} \frac{x^m}{m!}.

  • [(1)] Calculate f(x)2g(x)2f(x)^2 - g(x)^2.
  • [(2)] Express In+2(x)I_{n+2}(x) using In(x)I_n(x). \subsection*{IV. Final quantity}Let y(x)y_*(x) be the solution of the differential equation in {\rm I} that satisfiesy(0)=12,y_*(0) = \frac{1}{2},and definea:=y(ln3).a := y_*(\ln 3).In {\rm II}, let II be the value of the definite integral. In {\rm III}, letx0=ln(2+3),\qquadF0:=f(x0),G0:=g(x0).x_0 = \ln(2+\sqrt{3}),\qquadF_0 := f(x_0),\quad G_0 := g(x_0).DefineS:=4a+IG0+F0,K:=999S2+7.S := 4a + \frac{I}{G_0} + F_0,\qquad\mathcal{K} := 999\,S^2 + 7.Compute the integer K\mathcal{K}.\
Ground Truth
63943
Execution Trace
Reasoning Process

[THOUGHT] Let me solve this problem step by step.

Part I: Differential Equation The equation is dydx=y(1y)\frac{dy}{dx} = y(1-y), which is separable. dyy(1y)=dx\frac{dy}{y(1-y)} = dx

Using partial fractions: 1y(1y)=1y+11y\frac{1}{y(1-y)} = \frac{1}{y} + \frac{1}{1-y}

Integrating: lnyln1y=x+C\ln|y| - \ln|1-y| = x + C lny1y=x+C\ln\frac{y}{1-y} = x + C y1y=Aex\frac{y}{1-y} = Ae^x where A=eCA = e^C y=Aex(1y)y = Ae^x(1-y) y=AexAexyy = Ae^x - Ae^xy y(1+Aex)=Aexy(1 + Ae^x) = Ae^x y=Aex1+Aexy = \frac{Ae^x}{1 + Ae^x}

With y(0)=12y_*(0) = \frac{1}{2}: A1+A=12\frac{A}{1+A} = \frac{1}{2}, so A=1A = 1. Thus y(x)=ex1+exy_*(x) = \frac{e^x}{1 + e^x}

a=y(ln3)=31+3=34a = y_*(\ln 3) = \frac{3}{1+3} = \frac{3}{4}

Part II: Definite Integral I=11arccos(x/2)cos2(π3x)dxI = \int_{-1}^{1} \frac{\arccos(x/2)}{\cos^2(\frac{\pi}{3}x)} dx

Part III: Series f(x)=m=0x2m(2m)!=cosh(x)f(x) = \sum_{m=0}^{\infty} \frac{x^{2m}}{(2m)!} = \cosh(x) g(x)=f(x)=sinh(x)g(x) = f'(x) = \sinh(x)

(1) f(x)2g(x)2=cosh2(x)sinh2(x)=1f(x)^2 - g(x)^2 = \cosh^2(x) - \sinh^2(x) = 1

(2) For In(x)=0xtanhn(X)dXI_n(x) = \int_0^x \tanh^n(X) dX

In+2(x)=0xtanhn+2(X)dX=0xtanhn(X)tanh2(X)dXI_{n+2}(x) = \int_0^x \tanh^{n+2}(X) dX = \int_0^x \tanh^n(X) \cdot \tanh^2(X) dX =0xtanhn(X)(1sech2(X))dX= \int_0^x \tanh^n(X)(1 - \text{sech}^2(X)) dX =In(x)0xtanhn(X)sech2(X)dX= I_n(x) - \int_0^x \tanh^n(X) \text{sech}^2(X) dX =In(x)tanhn+1(x)n+1= I_n(x) - \frac{\tanh^{n+1}(x)}{n+1}

For x0=ln(2+3)x_0 = \ln(2+\sqrt{3}): ex0=2+3e^{x_0} = 2 + \sqrt{3} F0=cosh(x0)=ex0+ex02F_0 = \cosh(x_0) = \frac{e^{x_0} + e^{-x_0}}{2} G0=sinh(x0)=ex0ex02G_0 = \sinh(x_0) = \frac{e^{x_0} - e^{-x_0}}{2}

Let me compute these numerically. [/THOUGHT] [PYTHON] import numpy as np from scipy import integrate

Part I: a = y_*(ln 3)

a = 3 / (1 + 3) print(f"a = {a}")

Part II: Definite integral

def integrand(x): return np.arccos(x/2) / (np.cos(np.pi * x / 3))**2

I, error = integrate.quad(integrand, -1, 1) print(f"I = {I}")

Part III: x_0, F_0, G_0

x0 = np.log(2 + np.sqrt(3)) print(f"x0 = {x0}")

F0 = np.cosh(x0) G0 = np.sinh(x0) print(f"F0 = {F0}") print(f"G0 = {G0}")

Verify with explicit formula

e_x0 = 2 + np.sqrt(3) e_neg_x0 = 1 / e_x0 F0_check = (e_x0 + e_neg_x0) / 2 G0_check = (e_x0 - e_neg_x0) / 2 print(f"F0_check = {F0_check}") print(f"G0_check = {G0_check}")

Calculate S

S = 4*a + I/G0 + F0 print(f"S = {S}")

Calculate K

K = 999 * S**2 + 7 print(f"K = {K}") print(f"K rounded = {round(K)}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] a = 0.75 I = 5.196152422706632 x0 = 1.3169578969248166 F0 = 1.9999999999999998 G0 = 1.732050807568877 F0_check = 2.0 G0_check = 1.7320508075688772 S = 8.0 K = 63943.0 K rounded = 63943 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python calculation confirms all the values:

  • a=y(ln3)=34=0.75a = y_*(\ln 3) = \frac{3}{4} = 0.75
  • I=11arccos(x/2)cos2(π3x)dx5.196152...=33I = \int_{-1}^{1} \frac{\arccos(x/2)}{\cos^2(\frac{\pi}{3}x)} dx \approx 5.196152... = 3\sqrt{3}
  • x0=ln(2+3)x_0 = \ln(2+\sqrt{3})
  • F0=cosh(x0)=2F_0 = \cosh(x_0) = 2
  • G0=sinh(x0)=3G_0 = \sinh(x_0) = \sqrt{3}

Therefore: S=4a+IG0+F0=434+333+2=3+3+2=8S = 4a + \frac{I}{G_0} + F_0 = 4 \cdot \frac{3}{4} + \frac{3\sqrt{3}}{\sqrt{3}} + 2 = 3 + 3 + 2 = 8

K=999S2+7=99964+7=63936+7=63943\mathcal{K} = 999 \cdot S^2 + 7 = 999 \cdot 64 + 7 = 63936 + 7 = 63943 [/THOUGHT]

\boxed{63943}

Final Model Output
63943

Comparative Analysis (P6) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
57.7
HCX-007(high)
55.6
Llama-VARCO-8B-Instruct
54.7
Deepseek-V3.2
48.3
Gemini-3-Pro-Preview
47.6
A.X-4.0 (72B)
45.4
Solar-Pro-2 (31B)(high)
40.2
Grok-4.1-fast
29.0
Claude-Opus-4.5
20.6
EXAONE-4.0.1-32B (high)
11.1

Avg Token Usage

HCX-007(high)
10581.0
EXAONE-4.0.1-32B (high)
9149.0
Solar-Pro-2 (31B)(high)
9027.0
GPT-5.1 (high)
8547.0
Grok-4.1-fast
8351.0
Gemini-3-Pro-Preview
7889.0
A.X-4.0 (72B)
7410.0
Claude-Opus-4.5
5887.0
Deepseek-V3.2
5395.0
Llama-VARCO-8B-Instruct
1716.0