Problem Analysis #7

34.81s
10,354 toks
Problem Statement

Answer the following questions about a real symmetric matrix AA:A=(012102223).A =\begin{pmatrix}0 & 1 & 2 \\1 & 0 & 2 \\2 & 2 & 3\end{pmatrix}.

  • [I.] Find all the different eigenvalues of matrix AA, λ1,,λr\lambda_1, \cdots, \lambda_r (λ1<<λr\lambda_1 < \cdots < \lambda_r).
  • [II.] Find all the eigenspaces W(λ1),,W(λr)W(\lambda_1), \cdots, W(\lambda_r) corresponding to λ1,,λr\lambda_1, \cdots, \lambda_r, respectively.
  • [III.] Find an orthonormal basis b1,b2,b3b_1, b_2, b_3 consisting of eigenvectors of AA, each belonging to one of W(λ1),,W(λr)W(\lambda_1), \cdots, W(\lambda_r) obtained in Question II.
  • [IV.] Find the spectral decomposition of AA: A=i=1rλiPi, A = \sum_{i=1}^{r} \lambda_i P_i, where PiP_i is the projection matrix onto W(λi)W(\lambda_i).
  • [V.] Find AnA^n, where nn is any positive integer.
  • [VI.] Let λ1<λ2\lambda_1 < \lambda_2 be the eigenvalues from {\rm I}, and let d1:=dimW(λ1). d_1 := \dim W(\lambda_1). Let b1,b2,b3b_1,b_2,b_3 be the orthonormal eigenbasis from {\rm III}, and assume b3W(λ2)b_3 \in W(\lambda_2). Denote by (b3)1(b_3)_1 the first component of b3b_3, and set β:=(b3)12. \beta := |(b_3)_1|^2. For n=10n=10, let S10S_{10} be the sum of all entries of the matrix A10A^{10}: S10:=i=13j=13(A10)ij. S_{10} := \sum_{i=1}^3 \sum_{j=1}^3 (A^{10})_{ij}. Define S:=(λ2λ1)d1β1S10,K:=999S2+7. S := (\lambda_2 - \lambda_1)\, d_1\, \beta^{-1} S_{10}, \qquad \mathcal{K} := 999\,S^2 + 7. Compute the integer K\mathcal{K}. \
Ground Truth
3512109464910000575431
Execution Trace
Reasoning Process

[THOUGHT] Let me solve this step by step. I'll use Python to compute all the required values.

First, I need to:

  1. Find eigenvalues of matrix A
  2. Find eigenspaces
  3. Find orthonormal eigenbasis
  4. Find spectral decomposition
  5. Find A^n
  6. Compute the final value K

Let me start by computing the eigenvalues and eigenvectors. [/THOUGHT] [PYTHON] import numpy as np from numpy import linalg as LA from fractions import Fraction import sympy as sp

Define the matrix A

A = np.array([[0, 1, 2], [1, 0, 2], [2, 2, 3]], dtype=float)

Find eigenvalues and eigenvectors

eigenvalues, eigenvectors = LA.eig(A)

Sort eigenvalues and corresponding eigenvectors

idx = np.argsort(eigenvalues) eigenvalues = eigenvalues[idx] eigenvectors = eigenvectors[:, idx]

print("Eigenvalues (sorted):", eigenvalues) print("\nEigenvectors (columns):") print(eigenvectors)

Let's also compute eigenvalues symbolically using sympy

A_sym = sp.Matrix([[0, 1, 2], [1, 0, 2], [2, 2, 3]])

Characteristic polynomial

lam = sp.Symbol('lambda') char_poly = A_sym.charpoly(lam) print("\nCharacteristic polynomial:", char_poly.as_expr())

Find eigenvalues symbolically

eigenvalues_sym = A_sym.eigenvals() print("\nSymbolic eigenvalues:", eigenvalues_sym)

Get eigenvectors

eigenvects_sym = A_sym.eigenvects() print("\nSymbolic eigenvectors:") for ev in eigenvects_sym: print(f"Eigenvalue {ev[0]}, multiplicity {ev[1]}, eigenvectors: {ev[2]}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] Eigenvalues (sorted): [-1. -1. 5.] Eigenvectors (columns): [[-0.91287093 -0.27590253 0.40824829] [ 0.18257419 -0.7974171 0.40824829] [ 0.36514837 0.53665982 0.81649658]] Characteristic polynomial: lambda**3 - 3*lambda**2 - 9*lambda - 5 Symbolic eigenvalues: {5: 1, -1: 2} Symbolic eigenvectors: Eigenvalue -1, multiplicity 2, eigenvectors: [Matrix([ [-1], [ 1], [ 0]]), Matrix([ [-2], [ 0], [ 1]])] Eigenvalue 5, multiplicity 1, eigenvectors: [Matrix([ [1/2], [1/2], [ 1]])] [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Let me continue computing the required values for part VI.

From the output:

  • λ₁ = -1 (with multiplicity 2)
  • λ₂ = 5 (with multiplicity 1)
  • d₁ = dim W(λ₁) = 2

The eigenvector for λ₂ = 5 is [1/2, 1/2, 1]ᵀ. To normalize it:

  • Norm = √((1/2)² + (1/2)² + 1²) = √(1/4 + 1/4 + 1) = √(3/2) = √6/2
  • Normalized b₃ = [1/2, 1/2, 1]ᵀ / (√6/2) = [1/√6, 1/√6, 2/√6]ᵀ

So (b₃)₁ = 1/√6, and β = |(b₃)₁|² = 1/6

For A^10: A^10 = λ₁^10 · P₁ + λ₂^10 · P₂ = (-1)^10 · P₁ + 5^10 · P₂ = P₁ + 5^10 · P₂

Since P₁ + P₂ = I (identity), we have P₁ = I - P₂

P₂ = b₃ · b₃ᵀ where b₃ = [1/√6, 1/√6, 2/√6]ᵀ

The sum of all entries of P₂: P₂ has entries (b₃)ᵢ(b₃)ⱼ, so sum = (Σᵢ(b₃)ᵢ)² = (1/√6 + 1/√6 + 2/√6)² = (4/√6)² = 16/6 = 8/3

Sum of all entries of I = 3 (trace of 3×3 identity) Sum of all entries of P₁ = 3 - 8/3 = 1/3

S₁₀ = sum of entries of A^10 = 1·(1/3) + 5^10·(8/3) = (1 + 5^10·8)/3

5^10 = 9765625 S₁₀ = (1 + 9765625·8)/3 = (1 + 78125000)/3 = 78125001/3 = 26041667

Now: S = (λ₂ - λ₁)·d₁·β⁻¹·S₁₀ = (5-(-1))·2·6·26041667 = 6·2·6·26041667 = 72·26041667 = 1875000024

K = 999·S² + 7 = 999·(1875000024)² + 7

Let me verify this calculation: S = 72 × 26041667 = 1875000024 S² = 1875000024² = 3515625090000000576 K = 999 × 3515625090000000576 + 7 = 3512109464910000575424 + 7 = 3512109464910000575431

Wait, let me recalculate more carefully with Python. [/THOUGHT] [PYTHON] import numpy as np from fractions import Fraction

Given values from symbolic computation

lambda1 = -1 lambda2 = 5 d1 = 2 # dimension of W(lambda1)

Eigenvector for lambda2 = 5 is [1/2, 1/2, 1]

Normalize it

v = np.array([Fraction(1,2), Fraction(1,2), Fraction(1,1)]) norm_sq = sum(x**2 for x in v) print(f"Norm squared of eigenvector: {norm_sq}")

Normalized eigenvector b3

b3 = v / sqrt(norm_sq) = v / sqrt(3/2)

(b3)_1 = (1/2) / sqrt(3/2) = (1/2) * sqrt(2/3) = 1/sqrt(6)

beta = |(b3)_1|^2 = 1/6

beta = Fraction(1, 6) print(f"beta = {beta}")

A^10 = lambda1^10 * P1 + lambda2^10 * P2

P2 = b3 * b3^T (projection onto eigenspace of lambda2)

Sum of entries of P2 = (sum of components of b3)^2

sum of components of b3 = (1/2 + 1/2 + 1) / sqrt(3/2) = 2 / sqrt(3/2) = 2 * sqrt(2/3) = 2sqrt(2)/sqrt(3) = 2sqrt(6)/3

Actually: sum = (1/2 + 1/2 + 1) / sqrt(3/2) = 2 * sqrt(2/3) = 2*sqrt(2)/sqrt(3)

(sum)^2 = 4 * (2/3) = 8/3

sum_P2 = Fraction(8, 3) sum_I = 3 # sum of all entries of identity matrix sum_P1 = sum_I - sum_P2 print(f"Sum of entries of P1: {sum_P1}") print(f"Sum of entries of P2: {sum_P2}")

A^10 = (-1)^10 * P1 + 5^10 * P2 = P1 + 5^10 * P2

lambda1_10 = (-1)10 lambda2_10 = 510 print(f"5^10 = {lambda2_10}")

S10 = lambda1_10 * sum_P1 + lambda2_10 * sum_P2 print(f"S10 = {S10}")

S = (lambda2 - lambda1) * d1 * beta^(-1) * S10

S = (lambda2 - lambda1) * d1 * (1/beta) * S10 print(f"S = {S}")

K = 999 * S^2 + 7

K = 999 * S**2 + 7 print(f"K = {K}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] Norm squared of eigenvector: 3/2 beta = 1/6 Sum of entries of P1: 1/3 Sum of entries of P2: 8/3 5^10 = 9765625 S10 = 26041667 S = 1875000024 K = 3512109464910000575431 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python calculation confirms all the steps:

  • λ₁ = -1, λ₂ = 5
  • d₁ = 2 (dimension of eigenspace for λ₁)
  • β = 1/6 (square of first component of normalized eigenvector b₃)
  • S₁₀ = 26041667 (sum of all entries of A¹⁰)
  • S = (λ₂ - λ₁) · d₁ · β⁻¹ · S₁₀ = 6 · 2 · 6 · 26041667 = 1875000024
  • K = 999 · S² + 7 = 3512109464910000575431 [/THOUGHT]

\boxed{3512109464910000575431}

Final Model Output
3512109464910000575431

Comparative Analysis (P7) (Average across runs)

Avg Time Taken

Deepseek-V3.2
716.8
Gemini-3-Pro-Preview
238.5
Llama-VARCO-8B-Instruct
171.0
GPT-5.1 (high)
91.4
Grok-4.1-fast
70.1
Solar-Pro-2 (31B)(high)
68.0
Claude-Opus-4.5
34.8
A.X-4.0 (72B)
32.0
HCX-007(high)
29.5
EXAONE-4.0.1-32B (high)
2.2

Avg Token Usage

Grok-4.1-fast
14838.0
Deepseek-V3.2
14663.0
Llama-VARCO-8B-Instruct
13773.0
Solar-Pro-2 (31B)(high)
12124.0
GPT-5.1 (high)
11204.0
Gemini-3-Pro-Preview
10464.0
Claude-Opus-4.5
10354.0
A.X-4.0 (72B)
5137.0
HCX-007(high)
4970.0
EXAONE-4.0.1-32B (high)
3503.0