Answer the following questions about a real symmetric matrix :
- [I.] Find all the different eigenvalues of matrix , ().
- [II.] Find all the eigenspaces corresponding to , respectively.
- [III.] Find an orthonormal basis consisting of eigenvectors of , each belonging to one of obtained in Question II.
- [IV.] Find the spectral decomposition of : where is the projection matrix onto .
- [V.] Find , where is any positive integer.
- [VI.] Let be the eigenvalues from {\rm I}, and let Let be the orthonormal eigenbasis from {\rm III}, and assume . Denote by the first component of , and set For , let be the sum of all entries of the matrix : Define Compute the integer . \
[THOUGHT] Let me solve this step by step. I'll use Python to compute all the required values.
First, I need to:
- Find eigenvalues of matrix A
- Find eigenspaces
- Find orthonormal eigenbasis
- Find spectral decomposition
- Find A^n
- Compute the final value K
Let me start by computing the eigenvalues and eigenvectors. [/THOUGHT] [PYTHON] import numpy as np from numpy import linalg as LA from fractions import Fraction import sympy as sp
Define the matrix A
A = np.array([[0, 1, 2], [1, 0, 2], [2, 2, 3]], dtype=float)
Find eigenvalues and eigenvectors
eigenvalues, eigenvectors = LA.eig(A)
Sort eigenvalues and corresponding eigenvectors
idx = np.argsort(eigenvalues) eigenvalues = eigenvalues[idx] eigenvectors = eigenvectors[:, idx]
print("Eigenvalues (sorted):", eigenvalues) print("\nEigenvectors (columns):") print(eigenvectors)
Let's also compute eigenvalues symbolically using sympy
A_sym = sp.Matrix([[0, 1, 2], [1, 0, 2], [2, 2, 3]])
Characteristic polynomial
lam = sp.Symbol('lambda') char_poly = A_sym.charpoly(lam) print("\nCharacteristic polynomial:", char_poly.as_expr())
Find eigenvalues symbolically
eigenvalues_sym = A_sym.eigenvals() print("\nSymbolic eigenvalues:", eigenvalues_sym)
Get eigenvectors
eigenvects_sym = A_sym.eigenvects() print("\nSymbolic eigenvectors:") for ev in eigenvects_sym: print(f"Eigenvalue {ev[0]}, multiplicity {ev[1]}, eigenvectors: {ev[2]}") [/PYTHON]
[THOUGHT] Let me continue computing the required values for part VI.
From the output:
- λ₁ = -1 (with multiplicity 2)
- λ₂ = 5 (with multiplicity 1)
- d₁ = dim W(λ₁) = 2
The eigenvector for λ₂ = 5 is [1/2, 1/2, 1]ᵀ. To normalize it:
- Norm = √((1/2)² + (1/2)² + 1²) = √(1/4 + 1/4 + 1) = √(3/2) = √6/2
- Normalized b₃ = [1/2, 1/2, 1]ᵀ / (√6/2) = [1/√6, 1/√6, 2/√6]ᵀ
So (b₃)₁ = 1/√6, and β = |(b₃)₁|² = 1/6
For A^10: A^10 = λ₁^10 · P₁ + λ₂^10 · P₂ = (-1)^10 · P₁ + 5^10 · P₂ = P₁ + 5^10 · P₂
Since P₁ + P₂ = I (identity), we have P₁ = I - P₂
P₂ = b₃ · b₃ᵀ where b₃ = [1/√6, 1/√6, 2/√6]ᵀ
The sum of all entries of P₂: P₂ has entries (b₃)ᵢ(b₃)ⱼ, so sum = (Σᵢ(b₃)ᵢ)² = (1/√6 + 1/√6 + 2/√6)² = (4/√6)² = 16/6 = 8/3
Sum of all entries of I = 3 (trace of 3×3 identity) Sum of all entries of P₁ = 3 - 8/3 = 1/3
S₁₀ = sum of entries of A^10 = 1·(1/3) + 5^10·(8/3) = (1 + 5^10·8)/3
5^10 = 9765625 S₁₀ = (1 + 9765625·8)/3 = (1 + 78125000)/3 = 78125001/3 = 26041667
Now: S = (λ₂ - λ₁)·d₁·β⁻¹·S₁₀ = (5-(-1))·2·6·26041667 = 6·2·6·26041667 = 72·26041667 = 1875000024
K = 999·S² + 7 = 999·(1875000024)² + 7
Let me verify this calculation: S = 72 × 26041667 = 1875000024 S² = 1875000024² = 3515625090000000576 K = 999 × 3515625090000000576 + 7 = 3512109464910000575424 + 7 = 3512109464910000575431
Wait, let me recalculate more carefully with Python. [/THOUGHT] [PYTHON] import numpy as np from fractions import Fraction
Given values from symbolic computation
lambda1 = -1 lambda2 = 5 d1 = 2 # dimension of W(lambda1)
Eigenvector for lambda2 = 5 is [1/2, 1/2, 1]
Normalize it
v = np.array([Fraction(1,2), Fraction(1,2), Fraction(1,1)]) norm_sq = sum(x**2 for x in v) print(f"Norm squared of eigenvector: {norm_sq}")
Normalized eigenvector b3
b3 = v / sqrt(norm_sq) = v / sqrt(3/2)
(b3)_1 = (1/2) / sqrt(3/2) = (1/2) * sqrt(2/3) = 1/sqrt(6)
beta = |(b3)_1|^2 = 1/6
beta = Fraction(1, 6) print(f"beta = {beta}")
A^10 = lambda1^10 * P1 + lambda2^10 * P2
P2 = b3 * b3^T (projection onto eigenspace of lambda2)
Sum of entries of P2 = (sum of components of b3)^2
sum of components of b3 = (1/2 + 1/2 + 1) / sqrt(3/2) = 2 / sqrt(3/2) = 2 * sqrt(2/3) = 2sqrt(2)/sqrt(3) = 2sqrt(6)/3
Actually: sum = (1/2 + 1/2 + 1) / sqrt(3/2) = 2 * sqrt(2/3) = 2*sqrt(2)/sqrt(3)
(sum)^2 = 4 * (2/3) = 8/3
sum_P2 = Fraction(8, 3) sum_I = 3 # sum of all entries of identity matrix sum_P1 = sum_I - sum_P2 print(f"Sum of entries of P1: {sum_P1}") print(f"Sum of entries of P2: {sum_P2}")
A^10 = (-1)^10 * P1 + 5^10 * P2 = P1 + 5^10 * P2
lambda1_10 = (-1)10 lambda2_10 = 510 print(f"5^10 = {lambda2_10}")
S10 = lambda1_10 * sum_P1 + lambda2_10 * sum_P2 print(f"S10 = {S10}")
S = (lambda2 - lambda1) * d1 * beta^(-1) * S10
S = (lambda2 - lambda1) * d1 * (1/beta) * S10 print(f"S = {S}")
K = 999 * S^2 + 7
K = 999 * S**2 + 7 print(f"K = {K}") [/PYTHON]
[THOUGHT] The Python calculation confirms all the steps:
- λ₁ = -1, λ₂ = 5
- d₁ = 2 (dimension of eigenspace for λ₁)
- β = 1/6 (square of first component of normalized eigenvector b₃)
- S₁₀ = 26041667 (sum of all entries of A¹⁰)
- S = (λ₂ - λ₁) · d₁ · β⁻¹ · S₁₀ = 6 · 2 · 6 · 26041667 = 1875000024
- K = 999 · S² + 7 = 3512109464910000575431 [/THOUGHT]
\boxed{3512109464910000575431}