Problem Analysis #9

37.39s
8,603 toks
Problem Statement

In the two-dimensional orthogonal xyxy coordinate system, consider the curve LL represented by the following equations with the parameter tt (0 $$\leq$$ t $$\leq$$ 2$$\pi$$$). Here, a$ is a positive real constant.\begin{align}x(t) &= a(t - \sin t), \\y(t) &= a(1 - \cos t).\end{align}

  • [(I-1)] Obtain the length of the curve LL when tt varies in the range $0 \leq t \leq 2$$\pi$$$.

  • [(I-2)] For 0 < t < 2$$\pi$$$, obtain the curvature \kappa_L(t)atanarbitrarypointofthecurveat an arbitrary point of the curveL.Inthethreedimensionalorthogonal. In the three-dimensional orthogonal xyzcoordinatesystem,considerthecurvedsurfacerepresentedbythefollowingequationswiththeparameterscoordinate system, consider the curved surface represented by the following equations with the parametersuandandv( (uandandv$ are real numbers):\begin{align}x(u, v) &= \sinh u \cos v, \\y(u, v) &= 2 \sinh u \sin v, \\z(u, v) &= 3 \cosh u.\end{align}

  • [(II-1)] Express the curved surface by an equation without the parameters uu and vv.

  • [(II-2)] Sketch the xyxy-plane view at z=5z = 5 and the xzxz-plane view at y=0y = 0, respectively, of the curved surface. In the sketches, indicate the values at the intersections with each of the axes.

  • [(II-3)] Express a unit normal vector n\mathbf{n} of the curved surface by uu and vv. Here, the zz-component of n\mathbf{n} should be positive.

  • [(II-4)] Let κ\kappa be the Gaussian curvature at the point u=v=0u = v = 0. Calculate the absolute value κ|\kappa|. Finally, define the following quantities:

  • Let LL be the length of the cycloid in {\rm (I-1)}, and let κL(π)\kappa_L(\pi) be the curvature of LL at t=πt = \pi from {\rm (I-2)}. Define α:=LκL(π). \alpha := L \cdot \kappa_L(\pi).

  • In {\rm (II-2)}, denote by Ax>0A_x > 0 and Ay>0A_y > 0 the xx- and yy-intercepts (respectively) of the cross-section of the surface by the plane z=5z = 5, and by Az>0A_z > 0 the zz-intercept of the cross-section by the plane y=0y = 0. Define δ:=AxAyAz,ρ:=AyAx. \delta := A_x A_y A_z, \qquad \rho := \frac{A_y}{A_x}.

  • In {\rm (II-4)}, let β:=κ\beta := |\kappa| be the absolute value of the Gaussian curvature at u=v=0u = v = 0. Using these, defineS:=(αβδρ)3,K:=999S2+7.S := \bigl(\alpha\,\beta\,\delta\,\rho\bigr)^3,\qquad\mathcal{K} := 999\,S^2 + 7.Compute the integer K\mathcal{K}.\

Ground Truth
781975031906311
Execution Trace
Reasoning Process

[THOUGHT] Let me solve this step by step.

Part (I-1): Length of the cycloid The arc length formula for a parametric curve is: L=02π(dxdt)2+(dydt)2dtL = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt

With x(t)=a(tsint)x(t) = a(t - \sin t) and y(t)=a(1cost)y(t) = a(1 - \cos t):

  • dxdt=a(1cost)\frac{dx}{dt} = a(1 - \cos t)
  • dydt=asint\frac{dy}{dt} = a \sin t

So: (dxdt)2+(dydt)2=a2(1cost)2+a2sin2t=a2(12cost+cos2t+sin2t)=a2(22cost)=2a2(1cost)\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = a^2(1 - \cos t)^2 + a^2 \sin^2 t = a^2(1 - 2\cos t + \cos^2 t + \sin^2 t) = a^2(2 - 2\cos t) = 2a^2(1 - \cos t)

Using 1cost=2sin2(t/2)1 - \cos t = 2\sin^2(t/2): 2a22sin2(t/2)=2asin(t/2)=2asin(t/2)\sqrt{2a^2 \cdot 2\sin^2(t/2)} = 2a|\sin(t/2)| = 2a\sin(t/2) (for 0t2π0 \leq t \leq 2\pi)

L=02π2asin(t/2)dt=2a[2cos(t/2)]02π=4a(cosπcos0)=4a(11)=8aL = \int_0^{2\pi} 2a\sin(t/2) \, dt = 2a \cdot [-2\cos(t/2)]_0^{2\pi} = -4a(\cos\pi - \cos 0) = -4a(-1-1) = 8a

Part (I-2): Curvature of the cycloid The curvature formula is: κ=xyyx(x2+y2)3/2\kappa = \frac{|x'y'' - y'x''|}{(x'^2 + y'^2)^{3/2}}

  • x=a(1cost)x' = a(1 - \cos t), x=asintx'' = a\sin t
  • y=asinty' = a\sin t, y=acosty'' = a\cos t

xyyx=a(1cost)acostasintasint=a2(costcos2tsin2t)=a2(cost1)x'y'' - y'x'' = a(1-\cos t) \cdot a\cos t - a\sin t \cdot a\sin t = a^2(\cos t - \cos^2 t - \sin^2 t) = a^2(\cos t - 1)

xyyx=a2(1cost)|x'y'' - y'x''| = a^2(1 - \cos t)

(x2+y2)3/2=[2a2(1cost)]3/2=23/2a3(1cost)3/2(x'^2 + y'^2)^{3/2} = [2a^2(1 - \cos t)]^{3/2} = 2^{3/2} a^3 (1 - \cos t)^{3/2}

κL(t)=a2(1cost)23/2a3(1cost)3/2=123/2a(1cost)1/2=123/2a2sin2(t/2)=14asin(t/2)\kappa_L(t) = \frac{a^2(1-\cos t)}{2^{3/2} a^3 (1-\cos t)^{3/2}} = \frac{1}{2^{3/2} a (1-\cos t)^{1/2}} = \frac{1}{2^{3/2} a \sqrt{2\sin^2(t/2)}} = \frac{1}{4a|\sin(t/2)|}

At t=πt = \pi: κL(π)=14a1=14a\kappa_L(\pi) = \frac{1}{4a \cdot 1} = \frac{1}{4a}

So α=LκL(π)=8a14a=2\alpha = L \cdot \kappa_L(\pi) = 8a \cdot \frac{1}{4a} = 2

Part (II-1): Surface equation From x=sinhucosvx = \sinh u \cos v, y=2sinhusinvy = 2\sinh u \sin v, z=3coshuz = 3\cosh u

coshu=z/3\cosh u = z/3, so sinh2u=cosh2u1=z2/91\sinh^2 u = \cosh^2 u - 1 = z^2/9 - 1

x2=sinh2ucos2vx^2 = \sinh^2 u \cos^2 v, y2/4=sinh2usin2vy^2/4 = \sinh^2 u \sin^2 v

x2+y2/4=sinh2u=z2/91x^2 + y^2/4 = \sinh^2 u = z^2/9 - 1

So: x2+y24z29=1x^2 + \frac{y^2}{4} - \frac{z^2}{9} = -1

Part (II-2): Cross-sections At z=5z = 5: x2+y2/4=25/91=16/9x^2 + y^2/4 = 25/9 - 1 = 16/9 This is an ellipse: x216/9+y264/9=1\frac{x^2}{16/9} + \frac{y^2}{64/9} = 1 Ax=4/3A_x = 4/3, Ay=8/3A_y = 8/3

At y=0y = 0: x2z2/9=1x^2 - z^2/9 = -1, i.e., z2/9x2=1z^2/9 - x^2 = 1 This is a hyperbola. At x=0x = 0: z=3z = 3 (taking positive) Az=3A_z = 3

δ=AxAyAz=43833=323\delta = A_x \cdot A_y \cdot A_z = \frac{4}{3} \cdot \frac{8}{3} \cdot 3 = \frac{32}{3}

ρ=AyAx=8/34/3=2\rho = \frac{A_y}{A_x} = \frac{8/3}{4/3} = 2

Part (II-3) and (II-4): Gaussian curvature I'll compute this using Python. [/THOUGHT] [PYTHON] import numpy as np from sympy import *

Define parameters

u, v = symbols('u v', real=True)

Surface parametrization

x = sinh(u) * cos(v) y = 2 * sinh(u) * sin(v) z = 3 * cosh(u)

Partial derivatives

x_u = diff(x, u) x_v = diff(x, v) y_u = diff(y, u) y_v = diff(y, v) z_u = diff(z, u) z_v = diff(z, v)

Position vector and tangent vectors

r_u = Matrix([x_u, y_u, z_u]) r_v = Matrix([x_v, y_v, z_v])

First fundamental form coefficients

E = r_u.dot(r_u) F = r_u.dot(r_v) G = r_v.dot(r_v)

print("E =", simplify(E)) print("F =", simplify(F)) print("G =", simplify(G))

Normal vector (cross product)

N = r_u.cross(r_v) N_norm = sqrt(N.dot(N)) n = N / N_norm # unit normal

print("\nNormal vector N =", simplify(N)) print("N norm =", simplify(N_norm))

Second derivatives

r_uu = Matrix([diff(x_u, u), diff(y_u, u), diff(z_u, u)]) r_uv = Matrix([diff(x_u, v), diff(y_u, v), diff(z_u, v)]) r_vv = Matrix([diff(x_v, v), diff(y_v, v), diff(z_v, v)])

Second fundamental form coefficients

L_coef = r_uu.dot(N) / N_norm M_coef = r_uv.dot(N) / N_norm N_coef = r_vv.dot(N) / N_norm

print("\nL =", simplify(L_coef)) print("M =", simplify(M_coef)) print("N_coef =", simplify(N_coef))

Gaussian curvature K = (LN - M^2) / (EG - F^2)

K = (L_coef * N_coef - M_coef2) / (E * G - F2) K_simplified = simplify(K) print("\nGaussian curvature K =", K_simplified)

Evaluate at u = v = 0

K_at_0 = K_simplified.subs([(u, 0), (v, 0)]) print("\nK at u=v=0:", K_at_0)

beta = abs(K_at_0) print("beta = |K| =", beta) [/PYTHON]

Tool Output
[PYTHON OUTPUT] E = 3*sin(v)**2*cosh(u)**2 + 10*cosh(u)**2 - 9 F = 3*sin(2*v)*sinh(2*u)/4 G = -(3*sin(v)**2 - 4)*sinh(u)**2 Normal vector N = Matrix([[-6*cos(v)*sinh(u)**2], [-3*sin(v)*sinh(u)**2], [sinh(2*u)]]) N norm = sqrt(-27*sin(v)**2*sinh(u)**2 + 40*sinh(u)**2 + 4)*Abs(sinh(u)) L = 6*sinh(u)/(sqrt(-27*sin(v)**2*sinh(u)**2 + 40*sinh(u)**2 + 4)*Abs(sinh(u))) M = 0 N_coef = 6*sinh(u)**3/(sqrt(-27*sin(v)**2*sinh(u)**2 + 40*sinh(u)**2 + 4)*Abs(sinh(u))) Gaussian curvature K = 36/(-27*sin(v)**2*sinh(u)**2 + 40*sinh(u)**2 + 4)**2 K at u=v=0: 9/4 beta = |K| = 9/4 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Let me now compute the final answer using the values obtained:

  • α=LκL(π)=8a14a=2\alpha = L \cdot \kappa_L(\pi) = 8a \cdot \frac{1}{4a} = 2
  • β=K=94\beta = |K| = \frac{9}{4}
  • δ=AxAyAz=43833=323\delta = A_x \cdot A_y \cdot A_z = \frac{4}{3} \cdot \frac{8}{3} \cdot 3 = \frac{32}{3}
  • ρ=AyAx=2\rho = \frac{A_y}{A_x} = 2

Now compute: S=(αβδρ)3=(2943232)3S = (\alpha \cdot \beta \cdot \delta \cdot \rho)^3 = \left(2 \cdot \frac{9}{4} \cdot \frac{32}{3} \cdot 2\right)^3

=(2932243)3=(115212)3=963=884736= \left(\frac{2 \cdot 9 \cdot 32 \cdot 2}{4 \cdot 3}\right)^3 = \left(\frac{1152}{12}\right)^3 = 96^3 = 884736

K=999S2+7=9998847362+7\mathcal{K} = 999 \cdot S^2 + 7 = 999 \cdot 884736^2 + 7

8847362=782757150096884736^2 = 782757150096

K=999782757150096+7=781974392945904+7=781974392945911\mathcal{K} = 999 \cdot 782757150096 + 7 = 781974392945904 + 7 = 781974392945911 [/THOUGHT]

\boxed{781974392945911}

Final Model Output
781974392945911

Comparative Analysis (P9) (Average across runs)

Avg Time Taken

A.X-4.0 (72B)
1385.0
Deepseek-V3.2
484.2
Solar-Pro-2 (31B)(high)
298.7
GPT-5.1 (high)
139.8
Llama-VARCO-8B-Instruct
134.8
Gemini-3-Pro-Preview
94.3
Grok-4.1-fast
79.4
HCX-007(high)
44.1
Claude-Opus-4.5
37.4
EXAONE-4.0.1-32B (high)
33.3

Avg Token Usage

Solar-Pro-2 (31B)(high)
23128.0
GPT-5.1 (high)
16139.0
Deepseek-V3.2
14111.0
Grok-4.1-fast
13877.0
Gemini-3-Pro-Preview
13470.0
Llama-VARCO-8B-Instruct
8865.0
Claude-Opus-4.5
8603.0
A.X-4.0 (72B)
7948.0
EXAONE-4.0.1-32B (high)
6907.0
HCX-007(high)
6048.0