Problem Analysis #1

99.60s
5,358 toks
Problem Statement

For a square matrix AA, the matrix exponential eAe^{A} is defined byeA=E+k=11k!Ak,e^{A} = E + \sum_{k=1}^{\infty} \frac{1}{k!}A^{k},where EE is the identity matrix.

  • [(1)] Let A=(1445810335). A= \begin{pmatrix} -1 & 4 & 4 \\ -5 & 8 & 10 \\ 3 & -3 & -5 \end{pmatrix}. Compute the matrix exponential eAe^{A}.
  • [(2)] Consider the matrices Ax=(0x0x00001),B=(100010001), A_x= \begin{pmatrix} 0 & -x & 0 \\ x & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},\qquad B= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, where xx is a real number, and define the vector a=(11e). a= \begin{pmatrix} 1 \\[2mm] 1 \\[2mm] e \end{pmatrix}. Let C=BeAxC = B e^{A_x}. Determine the minimum and maximum values of yTCyyTy \frac{y^{T} C y}{y^{T}y} over all nonzero real vectors yR3y\in\mathbb{R}^{3}.
  • [(3)] Let f(z)=12zTCzaTz,z=(z1z2z3), f(z)=\frac{1}{2}z^{T} C z - a^{T}z, \qquad z= \begin{pmatrix} z_{1}\\ z_{2}\\ z_{3} \end{pmatrix}, where CC is the matrix from part (2). Find the value of z12+z22+z32 \sqrt{z_1^2+z_2^2+z_3^2} for the vector zz satisfying fz1=fz2=fz3=0. \frac{\partial f}{\partial z_{1}} = \frac{\partial f}{\partial z_{2}} = \frac{\partial f}{\partial z_{3}} =0. Let λ1,λ2,λ3\lambda_1,\lambda_2,\lambda_3 be the eigenvalues of the matrix AA in part {\rm (1)}. Let mm and MM be the minimum and maximum values, respectively, obtained in part {\rm (2)}, and letR=z12+z22+z32R = \sqrt{z_1^2+z_2^2+z_3^2}be the value obtained in part {\rm (3)}. Computeλ1λ2λ3mR2(λ12+λ22+λ32).\lambda_1\lambda_2\lambda_3 \cdot m \cdot R^2 \cdot \bigl(\lambda_1^2+\lambda_2^2+\lambda_3^2\bigr).\
Ground Truth
252
Execution Trace
Reasoning Process

To solve this problem, we need to address each part of the problem step-by-step.

Part (1): Compute the matrix exponential ( e^{A} )

First, we find the eigenvalues of matrix ( A ):

[ A = \begin{pmatrix} -1 & 4 & 4 \ -5 & 8 & 10 \ 3 & -3 & -5 \end{pmatrix}. ]

We use the characteristic equation ( \det(A - \lambda E) = 0 ) to find the eigenvalues.

[THOUGHT] I need to calculate the eigenvalues of matrix ( A ). I will use the sympy library to find the eigenvalues. [/THOUGHT] [PYTHON] from sympy import Matrix, symbols, solve

Define the matrix A

A = Matrix([ [-1, 4, 4], [-5, 8, 10], [3, -3, -5] ])

Define the symbol for eigenvalues

lambda_ = symbols('lambda')

Calculate the characteristic polynomial

char_poly = A.charpoly(lambda_)

Solve for the eigenvalues

eigenvalues = solve(char_poly, lambda_) print(eigenvalues)

Tool Output
[PYTHON OUTPUT] [-2, 1, 3] [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The eigenvalues of matrix ( A ) are ( \lambda_1 = -2 ), ( \lambda_2 = 1 ), and ( \lambda_3 = 3 ). We will use these eigenvalues in subsequent parts of the problem. [/THOUGHT]

Part (2): Determine the minimum and maximum values of ( \frac{y^{T} C y}{y^{T}y} )

First, we compute the matrix ( e^{A_x} ).

The matrix ( A_x ) is:

[ A_x = \begin{pmatrix} 0 & -x & 0 \ x & 0 & 0 \ 0 & 0 & 1 \end{pmatrix}. ]

This matrix can be split into two parts:

[ A_x = \begin{pmatrix} 0 & -x & 0 \ x & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{pmatrix} = X + E_{33}. ]

The exponential of ( X ) (the upper-left 2x2 block) is a rotation matrix:

[ e^X = \begin{pmatrix} \cos(x) & -\sin(x) \ \sin(x) & \cos(x) \end{pmatrix}. ]

Thus, the matrix exponential ( e^{A_x} ) is:

[ e^{A_x} = \begin{pmatrix} \cos(x) & -\sin(x) & 0 \ \sin(x) & \cos(x) & 0 \ 0 & 0 & e^1 \end{pmatrix} = \begin{pmatrix} \cos(x) & -\sin(x) & 0 \ \sin(x) & \cos(x) & 0 \ 0 & 0 & e \end{pmatrix}. ]

Now, we compute ( C = B e^{A_x} ):

[ B = \begin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix}. ]

[ C = B e^{A_x} = \begin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(x) & -\sin(x) & 0 \ \sin(x) & \cos(x) & 0 \ 0 & 0 & e \end{pmatrix} = \begin{pmatrix} \cos(x) & \sin(x) & 0 \ -\sin(x) & -\cos(x) & 0 \ 0 & 0 & e \end{pmatrix}. ]

The Rayleigh quotient ( \frac{y^{T} C y}{y^{T} y} ) for matrix ( C ) is maximized and minimized by the eigenvalues of ( C ). The eigenvalues of ( C ) are ( \cos(x) \pm i\sin(x) ) and ( e ).

The real parts of ( \cos(x) \pm i\sin(x) ) are ( \cos(x) ), and the eigenvalue ( e ) is real. Therefore, the minimum and maximum values are:

[ m = \min(\cos(x), e) = -1 \quad \text{(when ( x = \pi ))} ] [ M = \max(\cos(x), e) = e \quad \text{(when ( x = 0 ))} ]

Part (3): Find ( R ) for the vector ( z ) satisfying the partial derivatives of ( f(z) )

The function ( f(z) ) is given by:

[ f(z) = \frac{1}{2} z^T C z - a^T z. ]

[ C = \begin{pmatrix} \cos(x) & \sin(x) & 0 \ -\sin(x) & -\cos(x) & 0 \ 0 & 0 & e \end{pmatrix}, \quad a = \begin{pmatrix} 1 \ 1 \ e \end{pmatrix}. ]

The gradient of ( f ) is:

[ \nabla f(z) = Cz - a. ]

Setting the gradient to zero:

[ Cz = a. ]

We solve this system for ( z ). Let's assume ( x = 0 ) (which gives the maximum eigenvalue ( e )) for simplicity:

[ C = \begin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & e \end{pmatrix}. ]

[ Cz = \begin{pmatrix} 1 & 0 & 0 \ 0 & -1 & 0 \ 0 & 0 & e \end{pmatrix} \begin{pmatrix} z_1 \ z_2 \ z_3 \end{pmatrix} = \begin{pmatrix} z_1 \ -z_2 \ ez_3 \end{pmatrix} = \begin{pmatrix} 1 \ 1 \ e \end{pmatrix}. ]

Solving this system:

[ z_1 = 1, \quad -z_2 = 1 \implies z_2 = -1, \quad ez_3 = e \implies z_3 = 1. ]

Thus, the vector ( z ) is:

[ z = \begin{pmatrix} 1 \ -1 \ 1 \end{pmatrix}. ]

The norm ( R ) is:

[ R = \sqrt{z_1^2 + z_2^2 + z_3^2} = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{3}. ]

Final Calculation

Now, we compute the final expression:

[ \lambda_1 \lambda_2 \lambda_3 \cdot m \cdot R^2 \cdot (\lambda_1^2 + \lambda_2^2 + \lambda_3^2). ]

We have:

[ \lambda_1 = -2, \quad \lambda_2 = 1, \quad \lambda_3 = 3, ] [ m = -1, ] [ R^2 = 3, ] [ \lambda_1^2 + \lambda_2^2 + \lambda_3^2 = (-2)^2 + 1^2 + 3^2 = 4 + 1 + 9 = 14. ]

Thus:

[ \lambda_1 \lambda_2 \lambda_3 \cdot m \cdot R^2 \cdot (\lambda_1^2 + \lambda_2^2 + \lambda_3^2) = (-2) \cdot 1 \cdot 3 \cdot (-1) \cdot 3 \cdot 14 = 252. ]

The final answer is:

[ \boxed{252} ]

Final Model Output
252

Comparative Analysis (P1) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
150.0
Llama-VARCO-8B-Instruct
141.2
Deepseek-V3.2
124.1
A.X-4.0 (72B)
99.6
Gemini-3-Pro-Preview
97.2
Claude-Opus-4.5
43.6
Solar-Pro-2 (31B)(high)
40.8
HCX-007(high)
39.6
Grok-4.1-fast
34.8
EXAONE-4.0.1-32B (high)
6.3

Avg Token Usage

Claude-Opus-4.5
19293.0
Gemini-3-Pro-Preview
14285.0
Llama-VARCO-8B-Instruct
13418.0
Deepseek-V3.2
9555.0
GPT-5.1 (high)
9506.0
Grok-4.1-fast
9320.0
Solar-Pro-2 (31B)(high)
8677.0
HCX-007(high)
5746.0
A.X-4.0 (72B)
5358.0
EXAONE-4.0.1-32B (high)
5236.0