Let be the line of intersection of the planes given by the equationsLet be the line passing through the point and parallel to . Let denote the plane given by the equationSuppose that the line meets the plane at the point . Let be the foot of the perpendicular drawn from to the plane .If the length of the line segment is and the area of is , find the value of 4$$\ell$$^2 A^2.\
[THOUGHT] To find the value of (4\ell^2 A^2), we need to go through several steps:
- Find the direction vector of (L_1) by taking the cross product of the normal vectors of the given planes.
- Determine the parametric equations of (L_2) using the direction vector from (L_1) and the given point (P).
- Find the coordinates of point (Q) where (L_2) intersects the plane (\Pi).
- Calculate the length (\ell) of (PQ).
- Find the coordinates of point (R), the foot of the perpendicular from (P) to the plane (\Pi).
- Calculate the area (A) of (\triangle PQR).
- Compute (4\ell^2 A^2).
Let's start with step 1.
The normal vectors of the planes (2x + 3y + z = 4) and (x + 2y + z = 5) are (\mathbf{n}_1 = \langle 2, 3, 1 \rangle) and (\mathbf{n}_2 = \langle 1, 2, 1 \rangle).
The direction vector (\mathbf{d}) of (L_1) is the cross product (\mathbf{n}_1 \times \mathbf{n}_2): [ \mathbf{d} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 2 & 3 & 1 \ 1 & 2 & 1 \end{vmatrix} = \mathbf{i}(3 \cdot 1 - 1 \cdot 2) - \mathbf{j}(2 \cdot 1 - 1 \cdot 1) + \mathbf{k}(2 \cdot 2 - 3 \cdot 1) = \langle 1, -1, 1 \rangle ]
For step 2, the parametric equations of (L_2) passing through (P(2, -1, 3)) and parallel to (\mathbf{d}) are: [ x = 2 + t, \quad y = -1 - t, \quad z = 3 + t ]
For step 3, substitute these parametric equations into the plane equation (2x + y - 2z = 6): [ 2(2 + t) + (-1 - t) - 2(3 + t) = 6 ] [ 4 + 2t - 1 - t - 6 - 2t = 6 ] [ -3 - t = 6 ] [ t = -9 ] Substitute (t = -9) back into the parametric equations to find (Q): [ x = 2 - 9 = -7, \quad y = -1 + 9 = 8, \quad z = 3 - 9 = -6 ] So, (Q = (-7, 8, -6)).
For step 4, calculate the length (\ell) of (PQ): [ PQ = \sqrt{(-7 - 2)^2 + (8 + 1)^2 + (-6 - 3)^2} = \sqrt{(-9)^2 + 9^2 + (-9)^2} = \sqrt{81 + 81 + 81} = \sqrt{243} = 9\sqrt{3} ] Thus, (\ell = 9\sqrt{3}).
For step 5, find the coordinates of (R), the foot of the perpendicular from (P(2, -1, 3)) to the plane (2x + y - 2z = 6). The formula for the foot of the perpendicular from a point ((x_0, y_0, z_0)) to a plane (Ax + By + Cz + D = 0) is: [ R = \left( x_0 - \frac{A(Ax_0 + By_0 + Cz_0 + D)}{A^2 + B^2 + C^2}, y_0 - \frac{B(Ax_0 + By_0 + Cz_0 + D)}{A^2 + B^2 + C^2}, z_0 - \frac{C(Ax_0 + By_0 + Cz_0 + D)}{A^2 + B^2 + C^2} \right) ] For the plane (2x + y - 2z - 6 = 0) and point (P(2, -1, 3)): [ A = 2, \quad B = 1, \quad C = -2, \quad D = -6 ] [ 2(2) + 1(-1) - 2(3) - 6 = 4 - 1 - 6 - 6 = -9 ] [ A^2 + B^2 + C^2 = 2^2 + 1^2 + (-2)^2 = 4 + 1 + 4 = 9 ] [ R = \left( 2 - \frac{2(-9)}{9}, -1 - \frac{1(-9)}{9}, 3 - \frac{-2(-9)}{9} \right) = \left( 2 + 2, -1 + 1, 3 - 2 \right) = (4, 0, 1) ]
For step 6, calculate the area (A) of (\triangle PQR). We use the formula for the area of a triangle given by three points ((x_1, y_1, z_1)), ((x_2, y_2, z_2)), and ((x_3, y_3, z_3)): [ A = \frac{1}{2} \left| \mathbf{PQ} \times \mathbf{PR} \right| ] First, find vectors (\mathbf{PQ}) and (\mathbf{PR}): [ \mathbf{PQ} = \langle -7 - 2, 8 + 1, -6 - 3 \rangle = \langle -9, 9, -9 \rangle ] [ \mathbf{PR} = \langle 4 - 2, 0 + 1, 1 - 3 \rangle = \langle 2, 1, -2 \rangle ] Next, calculate the cross product (\mathbf{PQ} \times \mathbf{PR}): [ \mathbf{PQ} \times \mathbf{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ -9 & 9 & -9 \ 2 & 1 & -2 \end{vmatrix} = \mathbf{i}(9 \cdot -2 - (-9) \cdot 1) - \mathbf{j}(-9 \cdot -2 - (-9) \cdot 2) + \mathbf{k}(-9 \cdot 1 - 9 \cdot 2) ] [ = \mathbf{i}(-18 + 9) - \mathbf{j}(18 - 18) + \mathbf{k}(-9 - 18) = \langle -9, 0, -27 \rangle ] Find the magnitude of this vector: [ \left| \mathbf{PQ} \times \mathbf{PR} \right| = \sqrt{(-9)^2 + 0^2 + (-27)^2} = \sqrt{81 + 0 + 729} = \sqrt{810} = 9\sqrt{10} ] Thus, the area (A) is: [ A = \frac{1}{2} \cdot 9\sqrt{10} = \frac{9\sqrt{10}}{2} ]
For step 7, compute (4\ell^2 A^2): [ 4\ell^2 A^2 = 4 \left( 9\sqrt{3} \right)^2 \left( \frac{9\sqrt{10}}{2} \right)^2 = 4 \cdot 243 \cdot \frac{810}{4} = 243 \cdot 810 = 198270 ]
The final answer is: [ \boxed{198270} ]