Problem Analysis #13

35.84s
2,921 toks
Problem Statement

Let L1L_1 be the line of intersection of the planes given by the equations2x+3y+z=4andx+2y+z=5.2x + 3y + z = 4 \quad \text{and} \quad x + 2y + z = 5.Let L2L_2 be the line passing through the point P(2,1,3)P(2, -1, 3) and parallel to L1L_1. Let Π\Pi denote the plane given by the equation2x+y2z=6.2x + y - 2z = 6.Suppose that the line L2L_2 meets the plane Π\Pi at the point QQ. Let RR be the foot of the perpendicular drawn from PP to the plane Π\Pi.If the length of the line segment PQPQ is \ell and the area of PQR\triangle PQR is AA, find the value of 4$$\ell$$^2 A^2.\

Ground Truth
511758
Execution Trace
Reasoning Process

[THOUGHT] To find the value of (4\ell^2 A^2), we need to go through several steps:

  1. Find the direction vector of (L_1) by taking the cross product of the normal vectors of the given planes.
  2. Determine the parametric equations of (L_2) using the direction vector from (L_1) and the given point (P).
  3. Find the coordinates of point (Q) where (L_2) intersects the plane (\Pi).
  4. Calculate the length (\ell) of (PQ).
  5. Find the coordinates of point (R), the foot of the perpendicular from (P) to the plane (\Pi).
  6. Calculate the area (A) of (\triangle PQR).
  7. Compute (4\ell^2 A^2).

Let's start with step 1.

The normal vectors of the planes (2x + 3y + z = 4) and (x + 2y + z = 5) are (\mathbf{n}_1 = \langle 2, 3, 1 \rangle) and (\mathbf{n}_2 = \langle 1, 2, 1 \rangle).

The direction vector (\mathbf{d}) of (L_1) is the cross product (\mathbf{n}_1 \times \mathbf{n}_2): [ \mathbf{d} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 2 & 3 & 1 \ 1 & 2 & 1 \end{vmatrix} = \mathbf{i}(3 \cdot 1 - 1 \cdot 2) - \mathbf{j}(2 \cdot 1 - 1 \cdot 1) + \mathbf{k}(2 \cdot 2 - 3 \cdot 1) = \langle 1, -1, 1 \rangle ]

For step 2, the parametric equations of (L_2) passing through (P(2, -1, 3)) and parallel to (\mathbf{d}) are: [ x = 2 + t, \quad y = -1 - t, \quad z = 3 + t ]

For step 3, substitute these parametric equations into the plane equation (2x + y - 2z = 6): [ 2(2 + t) + (-1 - t) - 2(3 + t) = 6 ] [ 4 + 2t - 1 - t - 6 - 2t = 6 ] [ -3 - t = 6 ] [ t = -9 ] Substitute (t = -9) back into the parametric equations to find (Q): [ x = 2 - 9 = -7, \quad y = -1 + 9 = 8, \quad z = 3 - 9 = -6 ] So, (Q = (-7, 8, -6)).

For step 4, calculate the length (\ell) of (PQ): [ PQ = \sqrt{(-7 - 2)^2 + (8 + 1)^2 + (-6 - 3)^2} = \sqrt{(-9)^2 + 9^2 + (-9)^2} = \sqrt{81 + 81 + 81} = \sqrt{243} = 9\sqrt{3} ] Thus, (\ell = 9\sqrt{3}).

For step 5, find the coordinates of (R), the foot of the perpendicular from (P(2, -1, 3)) to the plane (2x + y - 2z = 6). The formula for the foot of the perpendicular from a point ((x_0, y_0, z_0)) to a plane (Ax + By + Cz + D = 0) is: [ R = \left( x_0 - \frac{A(Ax_0 + By_0 + Cz_0 + D)}{A^2 + B^2 + C^2}, y_0 - \frac{B(Ax_0 + By_0 + Cz_0 + D)}{A^2 + B^2 + C^2}, z_0 - \frac{C(Ax_0 + By_0 + Cz_0 + D)}{A^2 + B^2 + C^2} \right) ] For the plane (2x + y - 2z - 6 = 0) and point (P(2, -1, 3)): [ A = 2, \quad B = 1, \quad C = -2, \quad D = -6 ] [ 2(2) + 1(-1) - 2(3) - 6 = 4 - 1 - 6 - 6 = -9 ] [ A^2 + B^2 + C^2 = 2^2 + 1^2 + (-2)^2 = 4 + 1 + 4 = 9 ] [ R = \left( 2 - \frac{2(-9)}{9}, -1 - \frac{1(-9)}{9}, 3 - \frac{-2(-9)}{9} \right) = \left( 2 + 2, -1 + 1, 3 - 2 \right) = (4, 0, 1) ]

For step 6, calculate the area (A) of (\triangle PQR). We use the formula for the area of a triangle given by three points ((x_1, y_1, z_1)), ((x_2, y_2, z_2)), and ((x_3, y_3, z_3)): [ A = \frac{1}{2} \left| \mathbf{PQ} \times \mathbf{PR} \right| ] First, find vectors (\mathbf{PQ}) and (\mathbf{PR}): [ \mathbf{PQ} = \langle -7 - 2, 8 + 1, -6 - 3 \rangle = \langle -9, 9, -9 \rangle ] [ \mathbf{PR} = \langle 4 - 2, 0 + 1, 1 - 3 \rangle = \langle 2, 1, -2 \rangle ] Next, calculate the cross product (\mathbf{PQ} \times \mathbf{PR}): [ \mathbf{PQ} \times \mathbf{PR} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ -9 & 9 & -9 \ 2 & 1 & -2 \end{vmatrix} = \mathbf{i}(9 \cdot -2 - (-9) \cdot 1) - \mathbf{j}(-9 \cdot -2 - (-9) \cdot 2) + \mathbf{k}(-9 \cdot 1 - 9 \cdot 2) ] [ = \mathbf{i}(-18 + 9) - \mathbf{j}(18 - 18) + \mathbf{k}(-9 - 18) = \langle -9, 0, -27 \rangle ] Find the magnitude of this vector: [ \left| \mathbf{PQ} \times \mathbf{PR} \right| = \sqrt{(-9)^2 + 0^2 + (-27)^2} = \sqrt{81 + 0 + 729} = \sqrt{810} = 9\sqrt{10} ] Thus, the area (A) is: [ A = \frac{1}{2} \cdot 9\sqrt{10} = \frac{9\sqrt{10}}{2} ]

For step 7, compute (4\ell^2 A^2): [ 4\ell^2 A^2 = 4 \left( 9\sqrt{3} \right)^2 \left( \frac{9\sqrt{10}}{2} \right)^2 = 4 \cdot 243 \cdot \frac{810}{4} = 243 \cdot 810 = 198270 ]

The final answer is: [ \boxed{198270} ]

Final Model Output
198270

Comparative Analysis (P13) (Average across runs)

Avg Time Taken

Deepseek-V3.2
97.6
Gemini-3-Pro-Preview
51.8
Llama-VARCO-8B-Instruct
51.0
Solar-Pro-2 (31B)(high)
38.9
A.X-4.0 (72B)
35.8
HCX-007(high)
35.3
Grok-4.1-fast
29.2
GPT-5.1 (high)
22.2
Claude-Opus-4.5
21.5
EXAONE-4.0.1-32B (high)
7.0

Avg Token Usage

Solar-Pro-2 (31B)(high)
7713.0
Gemini-3-Pro-Preview
7454.0
GPT-5.1 (high)
7218.0
Grok-4.1-fast
6529.0
HCX-007(high)
5083.0
Claude-Opus-4.5
4957.0
Deepseek-V3.2
4661.0
EXAONE-4.0.1-32B (high)
4487.0
A.X-4.0 (72B)
2921.0
Llama-VARCO-8B-Instruct
1020.0