Problem Analysis #2

43.86s
3,825 toks
Problem Statement

In the following, zz is a complex number and ii is the imaginary unit. Consider the complex functionf(z)=cotzz2,f(z) = \frac{\cot z}{z^2},where cotz=1tanz\cot z = \dfrac{1}{\tan z}. For a positive integer mm, defineDm=limz0dmdzm(zcotz).D_m = \lim_{z\to 0} \frac{d^m}{dz^m}(z \cot z).If necessary, you may use D2=23D_2 = -\dfrac{2}{3} andlimznπznπsinz=(1)nfor any integer n.\lim_{z\to n\pi} \frac{z - n\pi}{\sin z} = (-1)^n\quad\text{for any integer } n.

  • [I.] Find all poles of f(z)f(z). Also, find the order of each pole.
  • [II.] Find the residue of each pole found in I.
  • [III.] Let MM be a positive integer and set R=π(2M+1)R = \pi(2M+1). For each real parameter tt with R2tR2-\dfrac{R}{2} \le t \le \dfrac{R}{2}, consider the four line segments \begin{align*} C_1:\ & z(t) = \frac{R}{2} + it, \\ C_2:\ & z(t) = -t + i\frac{R}{2}, \\ C_3:\ & z(t) = -\frac{R}{2} - it, \\ C_4:\ & z(t) = t - i\frac{R}{2}. \end{align*} These four oriented segments form the boundary of a square centered at the origin, traversed counterclockwise. For each complex integral Ik=Ckf(z)dzI_k = \displaystyle\int_{C_k} f(z)\,dz along CkC_k (k=1,2,3,4k = 1,2,3,4), find limMIk\displaystyle\lim_{M\to\infty} I_k.
  • [IV.] Let CC be the closed loop composed of the four line segments C1,C2,C3C_1, C_2, C_3, and C4C_4 in III. By applying the residue theorem to the complex integral I=Cf(z)dz, I = \oint_C f(z)\,dz, find the value of the infinite series n=11n2. \sum_{n=1}^{\infty} \frac{1}{n^2}.
  • [V.] Now replace f(z)f(z) by the complex function g(z)=cotzz2N, g(z) = \frac{\cot z}{z^{2N}}, where NN is a positive integer. By following the same contour method as in I–IV, express the infinite series n=11n2N \sum_{n=1}^{\infty} \frac{1}{n^{2N}} in terms of DmD_m. Finally, let pp be the order of the pole of f(z)f(z) at z=0z=0 (from I), and let rr be the residue of f(z)f(z) at z=0z=0 (from II). Let S2S_2 denote the value of n=11n2\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2} obtained in IV. From the expression in V, let TT be the value of n=11n2\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2} obtained by setting N=1N=1 in your general formula.Compute the integerK=999(p21)(3r)(D2)S2T.\mathcal{K}= 999\,(p^2 - 1)\,(-3r)\,(-D_2)\,\frac{S_2}{T}.\
Ground Truth
5328
Execution Trace
Reasoning Process

[THOUGHT] First, I need to identify the poles of ( f(z) = \frac{\cot z}{z^2} ).

The cotangent function (\cot z = \frac{\cos z}{\sin z}) has poles where (\sin z = 0). These occur at (z = n\pi) for integers (n), and each of these is a simple pole of (\cot z).

Therefore, ( f(z) = \frac{\cot z}{z^2} ) has poles at (z = n\pi) for all integers (n), including (n = 0).

Order of each pole:

  1. At (z = 0): We need to determine the order. Since (\cot z) behaves like (\frac{1}{z}) near (z = 0), (\frac{\cot z}{z^2}) behaves like (\frac{1}{z^3}). So, the pole at (z = 0) is of order 3.

  2. At (z = n\pi) for (n \neq 0): Since (\cot z) has a simple pole at these points, dividing by (z^2) results in a pole of order 3 (one from (\cot z) and two from (z^2)).

Residues at each pole:

  1. At (z = 0): To find the residue of (f(z)) at (z = 0), we use the definition of the residue for a pole of order 3: [ \text{Res}(f(z), 0) = \frac{1}{2!} \lim_{z \to 0} \frac{d^2}{dz^2} \left( z^3 f(z) \right) = \frac{1}{2} \lim_{z \to 0} \frac{d^2}{dz^2} (z \cot z). ] We are given (D_2 = -\frac{2}{3}), so: [ \text{Res}(f(z), 0) = \frac{1}{2} \left( -\frac{2}{3} \right) = -\frac{1}{3}. ]

  2. At (z = n\pi) for (n \neq 0): We use the fact that (\cot z) has residues of ((-1)^n) at these points. The residue of (\frac{\cot z}{z^2}) at (z = n\pi) is: [ \text{Res}(f(z), n\pi) = \lim_{z \to n\pi} \frac{z - n\pi}{(\cot z)(z - n\pi)^2} \cdot (z - n\pi)^3 = \lim_{z \to n\pi} \frac{z - n\pi}{\sin z} \cdot \frac{\cos z}{(z - n\pi)^2} = (-1)^n \cos(n\pi) \cdot \frac{1}{(n\pi)^2}. ] Since (\cos(n\pi) = (-1)^n), we get: [ \text{Res}(f(z), n\pi) = (-1)^n \cdot (-1)^n \cdot \frac{1}{(n\pi)^2} = \frac{1}{(n\pi)^2}. ]

Integral along the contour (C_k): For each (k = 1, 2, 3, 4), the integral (I_k = \int_{C_k} f(z),dz) along (C_k) as (M \to \infty):

  1. (C_1) and (C_3): These are vertical lines. As (M \to \infty), (|z| \to \infty), and (\cot z) is bounded. Therefore, (|f(z)| \to 0), making each integral vanish.
  2. (C_2) and (C_4): These are horizontal lines. As (M \to \infty), the integrals also vanish because (\cot z) oscillates between bounded values, and the length of the segment increases while the function's value decreases.

Thus, (\lim_{M \to \infty} I_k = 0) for (k = 1, 2, 3, 4).

Residue theorem application: The residue theorem states: [ \oint_C f(z),dz = 2\pi i \sum \text{Residues inside } C. ] As (M \to \infty), the only poles inside (C) are at (z = n\pi) for (n = -M, -M+1, \ldots, M).

The residues sum up as: [ \sum_{n=-M, n\neq 0}^{M} \frac{1}{(n\pi)^2} + \text{Res}(f(z), 0) = \sum_{n=1}^{M} \frac{1}{(n\pi)^2} + \sum_{n=1}^{M} \frac{1}{(n\pi)^2} - \frac{1}{3} = 2 \sum_{n=1}^{M} \frac{1}{(n\pi)^2} - \frac{1}{3}. ] Thus, [ \oint_C f(z),dz = 2\pi i \left( 2 \sum_{n=1}^{M} \frac{1}{(n\pi)^2} - \frac{1}{3} \right). ] Since (\oint_C f(z),dz \to 0) as (M \to \infty), we have: [ 0 = 2\pi i \left( 2 \sum_{n=1}^{\infty} \frac{1}{(n\pi)^2} - \frac{1}{3} \right). ] Solving for (\sum_{n=1}^{\infty} \frac{1}{n^2}), we get: [ 2 \sum_{n=1}^{\infty} \frac{1}{(n\pi)^2} = \frac{1}{3} \implies \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}. ]

Generalizing for (g(z) = \frac{\cot z}{z^{2N}}): The poles and residues for (g(z)) follow a similar pattern. The residue at (z = n\pi) for (n \neq 0) becomes: [ \text{Res}(g(z), n\pi) = \frac{1}{(n\pi)^{2N}}. ] The residue at (z = 0) involves higher-order derivatives and is more complex, but the key idea is that the residue theorem will yield: [ \oint_C g(z),dz = 2\pi i \left( \text{Res}(g(z), 0) + 2 \sum_{n=1}^{\infty} \frac{1}{(n\pi)^{2N}} \right). ] Since (\oint_C g(z),dz \to 0) as (M \to \infty), we solve for the series: [ 0 = 2\pi i \left( \text{Res}(g(z), 0) + 2 \sum_{n=1}^{\infty} \frac{1}{(n\pi)^{2N}} \right). ] This implies: [ \text{Res}(g(z), 0) = -2 \sum_{n=1}^{\infty} \frac{1}{(n\pi)^{2N}} \implies \sum_{n=1}^{\infty} \frac{1}{n^{2N}} = -\frac{\pi^{2N}}{2} \text{Res}(g(z), 0). ]

For (N = 1), we have: [ T = \sum_{n=1}^{\infty} \frac{1}{n^2} = -\frac{\pi^2}{2} \left( -\frac{1}{3} \right) = \frac{\pi^2}{6}. ]

Final Calculation: From I, the order (p = 3). From II, the residue (r = -\frac{1}{3}). From IV, (S_2 = \frac{\pi^2}{6}). From the expression in V, (T = \frac{\pi^2}{6}).

Using (D_2 = -\frac{2}{3}), we compute: [ \mathcal{K} = 999 \times (p^2 - 1) \times (-3r) \times (-D_2) \times \frac{S_2}{T}. ] Since (S_2 = T), the ratio (\frac{S_2}{T} = 1), so: [ \mathcal{K} = 999 \times (3^2 - 1) \times (-3 \times -\frac{1}{3}) \times (-\frac{2}{3}) \times 1 = 999 \times 8 \times 1 \times (-\frac{2}{3}) = 999 \times 8 \times -\frac{2}{3} = 999 \times -\frac{16}{3} = -3332. ]

The integer value of (\mathcal{K}) is: [ \boxed{-3332} ]

Final Model Output
-3332

Comparative Analysis (P2) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
149.6
Gemini-3-Pro-Preview
144.7
Grok-4.1-fast
89.6
Solar-Pro-2 (31B)(high)
71.1
GPT-5.1 (high)
55.4
Deepseek-V3.2
48.1
A.X-4.0 (72B)
43.9
Claude-Opus-4.5
33.5
HCX-007(high)
32.2
EXAONE-4.0.1-32B (high)
15.1

Avg Token Usage

Grok-4.1-fast
14348.0
Solar-Pro-2 (31B)(high)
13266.0
Llama-VARCO-8B-Instruct
12669.0
Gemini-3-Pro-Preview
10743.0
Deepseek-V3.2
8345.0
Claude-Opus-4.5
8331.0
EXAONE-4.0.1-32B (high)
8303.0
GPT-5.1 (high)
5813.0
HCX-007(high)
5438.0
A.X-4.0 (72B)
3825.0