Problem Analysis #35

13.77s
3,481 toks
Problem Statement

A population is normally distributed with mean mm and standard deviation 55. From this population, a random sample of size 3636 is taken, and a 99%99\% confidence interval for the population mean mm is constructed using the sample mean. The resulting confidence interval is 1.2 $$\leq$$ m $$\leq$$ a. Find the value of aa. (Here, ZZ denotes a standard normal random variable, and use P(Z2.58)=0.99\text{P}(|Z| \leq 2.58) = 0.99.) [3 points]Compute 10a10a.\

Ground Truth
55
Execution Trace
Reasoning Process

[THOUGHT] The confidence interval for the population mean ( m ) is given by: [ \bar{x} - Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right) \leq m \leq \bar{x} + Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right) ] where:

  • (\bar{x}) is the sample mean,
  • (Z_{\alpha/2}) is the critical value from the standard normal distribution,
  • (\sigma) is the population standard deviation,
  • (n) is the sample size.

Given:

  • The confidence interval is (1.2 \leq m \leq a),
  • The confidence level is 99%,
  • The critical value (Z_{\alpha/2} = 2.58),
  • The population standard deviation (\sigma = 5),
  • The sample size (n = 36).

From the lower bound of the confidence interval: [ \bar{x} - 2.58 \left(\frac{5}{\sqrt{36}}\right) = 1.2 ]

First, calculate the standard error: [ \frac{5}{\sqrt{36}} = \frac{5}{6} \approx 0.8333 ]

Then, substitute the standard error into the equation: [ \bar{x} - 2.58 \times 0.8333 = 1.2 ]

Calculate (2.58 \times 0.8333): [ 2.58 \times 0.8333 \approx 2.125 ]

So: [ \bar{x} - 2.125 = 1.2 ]

Solving for (\bar{x}): [ \bar{x} = 1.2 + 2.125 = 3.325 ]

Now, use the sample mean to find the upper bound (a): [ a = \bar{x} + 2.58 \left(\frac{5}{\sqrt{36}}\right) ]

Substitute the sample mean and standard error: [ a = 3.325 + 2.125 = 5.45 ]

Finally, compute (10a): [ 10a = 10 \times 5.45 = 54.5 ]

Since the final answer must be an integer: [ \boxed{545} ] [/THOUGHT] [PYTHON]

Define the values

Z = 2.58 sigma = 5 n = 36 lower_bound = 1.2

Calculate the standard error

standard_error = sigma / (n ** 0.5)

Calculate the sample mean

sample_mean = lower_bound + Z * standard_error

Calculate the upper bound a

a = sample_mean + Z * standard_error

Calculate 10a

result = 10 * a print(int(result))

Tool Output
[PYTHON OUTPUT] 55 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Based on the Python output, the value of (10a) is (55). Therefore, the final answer is: \boxed{55}

Final Model Output
55

Comparative Analysis (P35) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
636.4
Llama-VARCO-8B-Instruct
80.1
HCX-007(high)
49.6
Deepseek-V3.2
47.8
Gemini-3-Pro-Preview
24.4
Solar-Pro-2 (31B)(high)
16.4
Claude-Opus-4.5
13.8
A.X-4.0 (72B)
13.8
Grok-4.1-fast
10.6
GPT-5.1 (high)
7.8

Avg Token Usage

Llama-VARCO-8B-Instruct
6041.0
HCX-007(high)
5122.0
Gemini-3-Pro-Preview
4633.0
Solar-Pro-2 (31B)(high)
4521.0
Grok-4.1-fast
4352.0
A.X-4.0 (72B)
3481.0
Claude-Opus-4.5
3452.0
Deepseek-V3.2
2931.0
GPT-5.1 (high)
2481.0
EXAONE-4.0.1-32B (high)
1752.0