Problem Analysis #38

27.96s
2,613 toks
Problem Statement

Let aa be a natural number with a6a \leq 6. Using one die and one coin, perform the following experiment.\begin{center}\fbox{\begin{minipage}{0.9\textwidth}Roll the die once.\quad-- If the outcome is less than or equal to aa, toss the coin 55 times and record the number of heads.\quad-- If the outcome is greater than aa, toss the coin 33 times and record the number of heads.\end{minipage}}\end{center}Repeat this experiment 1920019200 times, and let XX be the number of times the recorded value is 33. Suppose that E(X)=4800\text{E}(X) = 4800. Using the standard normal table on the right, computeP(X4800+30a),\text{P}(X \leq 4800 + 30a),and let this value be kk. Compute 1000 $$\times$$ k. [4 points]\begin{center}\begin{tabular}{|c|c|}\hlinezz & P(0Zz)\text{P}(0 \leq Z \leq z) \\hline0.5 & 0.191 \\hline1.0 & 0.341 \\hline1.5 & 0.433 \\hline2.0 & 0.477 \\hline2.5 & 0.494 \\hline3.0 & 0.499 \\hline\end{tabular}\end{center}\

Ground Truth
977
Execution Trace
Reasoning Process

[THOUGHT] To solve this problem, I'll follow these steps:

  1. Determine the probability of recording 3 heads:

    • If the die roll is ≤ (a), the probability of getting 3 heads from 5 coin tosses is calculated using the binomial distribution.
    • If the die roll is > (a), the probability of getting 3 heads from 3 coin tosses is also calculated using the binomial distribution.
  2. Calculate the expected number of times the recorded value is 3:

    • The expected value (\text{E}(X)) is given as 4800. This will help us find (a).
  3. Find the variance of (X):

    • The variance of the number of times the recorded value is 3 can be calculated using the law of total variance.
  4. Standardize the value (4800 + 30a) and use the standard normal table to find the probability:

    • Use the Z-score formula to standardize (4800 + 30a).
    • Find the corresponding probability from the given standard normal table.
  5. Calculate (1000 \times k) where (k) is the probability found.

Let's start by calculating the probabilities for the number of heads:

Probability Calculations:

  • For the die roll ≤ (a), we toss the coin 5 times. The probability of getting exactly 3 heads: [ P(H = 3 \mid \text{Die} \leq a) = \binom{5}{3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^2 = 10 \cdot \frac{1}{32} = \frac{10}{32} = \frac{5}{16} ]

  • For the die roll > (a), we toss the coin 3 times. The probability of getting exactly 3 heads: [ P(H = 3 \mid \text{Die} > a) = \binom{3}{3} \left(\frac{1}{2}\right)^3 = 1 \cdot \frac{1}{8} = \frac{1}{8} ]

Expected Value Calculation:

Given (\text{E}(X) = 4800) and the experiment is repeated 19200 times, we have: [ \text{E}(X) = 19200 \cdot \left( \frac{a}{6} \cdot \frac{5}{16} + \frac{6-a}{6} \cdot \frac{1}{8} \right) = 4800 ]

Solve for (a): [ 19200 \cdot \left( \frac{a}{6} \cdot \frac{5}{16} + \frac{6-a}{6} \cdot \frac{1}{8} \right) = 4800 ] [ 19200 \cdot \left( \frac{5a}{96} + \frac{6-a}{48} \right) = 4800 ] [ 19200 \cdot \left( \frac{5a}{96} + \frac{12-2a}{96} \right) = 4800 ] [ 19200 \cdot \frac{5a + 12 - 2a}{96} = 4800 ] [ 19200 \cdot \frac{3a + 12}{96} = 4800 ] [ 3a + 12 = \frac{4800 \cdot 96}{19200} ] [ 3a + 12 = 24 ] [ 3a = 12 ] [ a = 4 ]

Variance Calculation:

Let (X_i) be the indicator random variable for the (i)-th experiment where the recorded value is 3. Then (\text{Var}(X) = 19200 \cdot \text{Var}(X_i)).

[ \text{Var}(X_i) = \text{E}(X_i^2) - (\text{E}(X_i))^2 ] [ \text{E}(X_i) = \frac{4}{6} \cdot \frac{5}{16} + \frac{2}{6} \cdot \frac{1}{8} = \frac{1}{3} \cdot \frac{5}{16} + \frac{1}{3} \cdot \frac{1}{8} = \frac{5}{48} + \frac{6}{48} = \frac{11}{48} ]

For (\text{E}(X_i^2)), note (X_i) is 0 or 1: [ \text{E}(X_i^2) = \text{E}(X_i) = \frac{11}{48} ] Thus, [ \text{Var}(X_i) = \frac{11}{48} - \left(\frac{11}{48}\right)^2 = \frac{11}{48} - \frac{121}{2304} = \frac{528 - 121}{2304} = \frac{407}{2304} ] [ \text{Var}(X) = 19200 \cdot \frac{407}{2304} = 19200 \cdot \frac{407}{2304} \approx 3325 ]

Standardizing (4800 + 30a):

For (a = 4), we have (4800 + 30 \times 4 = 4800 + 120 = 4920).

The Z-score is: [ Z = \frac{4920 - 4800}{\sqrt{3325}} = \frac{120}{\sqrt{3325}} \approx \frac{120}{57.67} \approx 2.08 ]

Using the standard normal table, (P(0 \leq Z \leq 2.08)) is closest to (P(0 \leq Z \leq 2.0) = 0.477).

The cumulative probability up to (Z = 2.08) is: [ P(Z \leq 2.08) \approx 0.5 + 0.477 = 0.977 ]

Thus, (k = 0.977).

Final Calculation: [ 1000 \times k = 1000 \times 0.977 = 977 ]

[/THOUGHT] \boxed{977}

Final Model Output
977

Comparative Analysis (P38) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
69.5
Solar-Pro-2 (31B)(high)
64.7
Gemini-3-Pro-Preview
57.4
Deepseek-V3.2
51.2
Grok-4.1-fast
32.0
HCX-007(high)
30.4
A.X-4.0 (72B)
28.0
GPT-5.1 (high)
25.8
Claude-Opus-4.5
21.1
EXAONE-4.0.1-32B (high)
7.3

Avg Token Usage

Solar-Pro-2 (31B)(high)
10399.0
Gemini-3-Pro-Preview
10165.0
Grok-4.1-fast
6540.0
Claude-Opus-4.5
5947.0
Deepseek-V3.2
5195.0
HCX-007(high)
5075.0
EXAONE-4.0.1-32B (high)
4934.0
GPT-5.1 (high)
3762.0
Llama-VARCO-8B-Instruct
3117.0
A.X-4.0 (72B)
2613.0