Problem Analysis #8

202.09s
8,047 toks
Problem Statement

Answer the following questions. Here, for any complex value zz, zˉ\bar{z} is the complex conjugate of zz, argz\arg z is the argument of zz, z|z| is the absolute value of zz, and ii is the imaginary unit.\subsection*{I.}Sketch the region of zz on the complex plane that satisfieszzˉ+2(z+zˉ)+3i(zzˉ)+20.z\bar{z} + \sqrt{2}(z + \bar{z}) + 3i(z - \bar{z}) + 2 \leq 0.\subsection*{II.}Consider the complex-valued functionf(z)=z22(z2+2i)z2.f(z) = \frac{z^2 - 2}{(z^2 + 2i)z^2}.

  • [(1)] Find all the poles of f(z)f(z) as well as the orders and residues at the poles.

  • [(2)] By applying the residue theorem, find the value of the integral I1=Cf(z)dz, I_1 = \oint_C f(z)\,dz, where the integration path CC is the circle in the counterclockwise direction given by z+1=2|z + 1| = 2. \subsection*{III.}

  • [(1)] Let g(z)g(z) be a complex-valued function satisfying limzg(z)=0 \lim_{|z|\to\infty} g(z) = 0 for 0 $$\leq$$ \arg z $$\leq$$ $$\pi$$$. Let C_Rbethesemicircle,withradiusbe the semicircle, with radiusR, in the upper half of the complex plane with center at the origin. Show that $$ \lim_{R\to\infty} \int_{C_R} e^{iaz} g(z)\,dz = 0, $$ where a$ is a positive real number.

  • [(2)] Find the value of the integral I2=0sinxxdx. I_2 = \int_0^{\infty} \frac{\sin x}{x}\,dx. \subsection*{IV. Final quantity}In I, the region for zz is a disk. Let RR be its radius and cc be its center. In II(2), let RinR_{\mathrm{in}} be the sum of the residues of f(z)f(z) over all poles lying inside the circle z+1=2|z + 1| = 2. In II(2) and III(2), let I1I_1 and I2I_2 be the values of the corresponding integrals.DefineS:=(R2+c2)2(I1I2)31Rin,K:=999S2+7.S := (R^2 + |c|^2)^2 \left(\frac{|I_1|}{I_2}\right)^3 \cdot \frac{1}{|R_{\mathrm{in}}|},\qquad\mathcal{K} := 999\,S^2 + 7.Compute the integer K\mathcal{K}.\

Ground Truth
40919040007
Execution Trace
Reasoning Process

[THOUGHT] We need to compute S and then K. S involves:

  • I: Region for z: disk with radius R and center c.
  • II(2): I₁ = ∮_C f(z) dz, C: |z+1|=2. Also R_in = sum of residues of f(z) over poles inside that circle.
  • III(2): I₂ = ∫_0^∞ sin x / x dx.

We need to compute:

  1. From I: Find R and c from inequality: z\bar{z} + √2(z + \bar{z}) + 3i(z - \bar{z}) + 2 ≤ 0. Write z = x + iy, then \bar{z} = x - iy. Compute: z\bar{z} = x^2 + y^2. z + \bar{z} = 2x. z - \bar{z} = 2iy. So inequality: (x^2 + y^2) + √2 * 2x + 3i * (2iy) + 2 ≤ 0. Wait careful: 3i(z - \bar{z}) = 3i * (2iy) = 3i * 2iy = 6 i^2 y = -6y. So expression: x^2 + y^2 + 2√2 x - 6y + 2 ≤ 0. Complete squares: (x^2 + 2√2 x) + (y^2 - 6y) + 2 ≤ 0. For x: x^2 + 2√2 x = (x + √2)^2 - 2. For y: y^2 - 6y = (y - 3)^2 - 9. Then total: (x + √2)^2 - 2 + (y - 3)^2 - 9 + 2 ≤ 0 → (x + √2)^2 + (y - 3)^2 - 9 ≤ 0. Wait compute: -2 -9 +2 = -9. Yes. So (x + √2)^2 + (y - 3)^2 ≤ 9. Thus center c = -√2 + 3i? Actually x-coordinate: -√2, y-coordinate: 3. So c = -√2 + 3i. Radius R = sqrt(9) = 3.

  2. From II: f(z) = (z^2 - 2) / ((z^2 + 2i) z^2). Poles: denominator zeros: (z^2 + 2i) z^2 = 0. So z^2 = 0 → z=0 (double pole? Actually z^2 factor gives pole order 2 at z=0). And z^2 + 2i = 0 → z^2 = -2i = 2 e^{-iπ/2}? Actually -2i = 2 * (-i) = 2 e^{-iπ/2}. So z = ±√(2) e^{-iπ/4} = ±√2 (cos π/4 - i sin π/4) = ±√2 (1/√2 - i/√2) = ±(1 - i). Wait compute: √2 e^{-iπ/4} = √2 (cos π/4 - i sin π/4) = √2 (√2/2 - i√2/2) = 1 - i. So poles at z = 1 - i and z = -1 + i? Actually ±(1 - i): second root is -(1 - i) = -1 + i. So poles: z=0 (order 2), z=1-i (order 1), z=-1+i (order 1). Need residues at each pole.

    Compute residues: For simple poles: residue = lim_{z→z0} (z - z0) f(z). For double pole at 0: residue = coefficient of 1/z in Laurent expansion.

    Let's compute using sympy.

    Also need I₁ = ∮_C f(z) dz = 2πi * sum of residues inside C. C: |z+1|=2, center at -1, radius 2. Determine which poles lie inside: compute distances from -1:

    • z=0: distance |0+1|=1 <2 → inside.
    • z=1-i: distance |1-i +1| = |2 - i| = sqrt(4+1)=√5 ≈2.236 >2? Actually √5 ≈2.236 >2 → outside.
    • z=-1+i: distance |-1+i+1| = |i| = 1 <2 → inside. So poles inside: z=0 and z=-1+i. Sum of residues inside = Res at 0 + Res at -1+i = R_in.

    Compute I₁ = 2πi * R_in.

  3. From III(2): I₂ = ∫_0^∞ sin x / x dx = π/2 (known result). But we can compute via contour integration if needed, but we can trust known value π/2.

    However, we need exact numeric value for S and K. S involves (|I₁|/I₂)^3. I₁ is complex? Actually I₁ is integral of f(z) dz, which is complex number. |I₁| is its magnitude.

    So compute numeric values.

    Steps:

    • Compute residues using sympy.
    • Compute R_in = Res(0) + Res(-1+i).
    • Compute I₁ = 2πi * R_in.
    • Compute |I₁|.
    • Compute I₂ = π/2.
    • Compute R = 3, c = -√2 + 3i, so |c| = sqrt( (√2)^2 + 3^2 ) = sqrt(2+9)=√11.
    • Then R^2 + |c|^2 = 9 + 11 = 20.
    • So (R^2 + |c|^2)^2 = 400.
    • Compute |I₁|/I₂ = |I₁| / (π/2) = 2|I₁|/π.
    • Cube: (2|I₁|/π)^3 = 8 |I₁|^3 / π^3.
    • Multiply by 400: S = 400 * 8 |I₁|^3 / π^3 * 1/|R_in| = 3200 |I₁|^3 / (π^3 |R_in|).
    • Then K = 999 S^2 + 7.

    Need numeric values. Let's compute with Python. [/THOUGHT] [PYTHON] import sympy as sp import cmath import math

Define symbols

z = sp.symbols('z')

Define f(z)

f = (z2 - 2) / ((z2 + 2*sp.I) * z**2) print("f(z) =", f)

Find poles

denom = sp.denom(f) print("Denominator:", denom)

Solve denominator = 0

poles = sp.solve(denom, z) print("Poles:", poles)

Also get multiplicities? Let's compute residues directly.

Compute residues at each pole

Pole at z=0 (order 2)

res0 = sp.residue(f, z, 0) print("Residue at z=0:", res0, "=", complex(res0.evalf()))

Pole at z = 1 - i

z1 = 1 - 1j # Python uses j for imaginary res1 = sp.residue(f, z, 1 - sp.I) print("Residue at z=1-i:", res1, "=", complex(res1.evalf()))

Pole at z = -1 + i

z2 = -1 + 1j res2 = sp.residue(f, z, -1 + sp.I) print("Residue at z=-1+i:", res2, "=", complex(res2.evalf()))

Compute R_in = sum of residues inside C: z=0 and z=-1+i

R_in = res0 + res2 print("R_in = Res0 + Res(-1+i) =", R_in, "=", complex(R_in.evalf()))

Compute I1 = 2πi * R_in

I1 = 2 * sp.pi * sp.I * R_in print("I1 = 2πi * R_in =", I1, "=", complex(I1.evalf()))

Compute |I1|

I1_complex = complex(I1.evalf()) abs_I1 = abs(I1_complex) print("|I1| =", abs_I1)

I2 = π/2

I2 = sp.pi / 2 print("I2 = π/2 =", float(I2.evalf()))

Compute R and c from part I

R = 3 c = -math.sqrt(2) + 3j abs_c = abs(c) print("R =", R) print("c =", c) print("|c| =", abs_c)

Compute (R^2 + |c|^2)^2

term1 = R2 + abs_c2 print("R^2 + |c|^2 =", term1) term1_sq = term1**2 print("(R^2 + |c|^2)^2 =", term1_sq)

Compute |I1|/I2

ratio = abs_I1 / float(I2.evalf()) print("|I1|/I2 =", ratio) ratio_cubed = ratio**3 print("(|I1|/I2)^3 =", ratio_cubed)

Compute |R_in|

abs_R_in = abs(complex(R_in.evalf())) print("|R_in| =", abs_R_in)

Compute S

S = term1_sq * ratio_cubed / abs_R_in print("S =", S)

Compute K = 999 S^2 + 7

K = 999 * S**2 + 7 print("K = 999 S^2 + 7 =", K) print("K as integer:", int(K)) [/PYTHON]

Tool Output
[PYTHON OUTPUT] f(z) = (z**2 - 2)/(z**2*(z**2 + 2*I)) Denominator: z**2*(z**2 + 2*I) Poles: [0, -1 + I, 1 - I] Residue at z=0: 0 = 0j Residue at z=1-i: 1/4 - 2*(1/4 + I/4)/(1 - I)**2 + I/4 = (0.5+3.3881317890172014e-21j) Residue at z=-1+i: -1/4 - I/4 - 2*(-1/4 - I/4)/(-1 + I)**2 = (-0.5+3.3881317890172014e-21j) R_in = Res0 + Res(-1+i) = -1/4 - I/4 - 2*(-1/4 - I/4)/(-1 + I)**2 = (-0.5+3.3881317890172014e-21j) I1 = 2πi * R_in = 2*I*pi*(-1/4 - I/4 - 2*(-1/4 - I/4)/(-1 + I)**2) = (-4.157863256941595e-23-3.141592653589793j) |I1| = 3.141592653589793 I2 = π/2 = 1.5707963267948966 R = 3 c = (-1.4142135623730951+3j) |c| = 3.3166247903554 R^2 + |c|^2 = 20.0 (R^2 + |c|^2)^2 = 400.0 |I1|/I2 = 2.0 (|I1|/I2)^3 = 8.0 |R_in| = 0.5 S = 6400.0 K = 999 S^2 + 7 = 40919040007.0 K as integer: 40919040007 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python computation gives S = 6400.0 and K = 40919040007.0. The integer value is 40919040007. [/THOUGHT] \boxed{40919040007}

Final Model Output
40919040007

Comparative Analysis (P8) (Average across runs)

Avg Time Taken

Gemini-3-Pro-Preview
276.8
Deepseek-V3.2
202.1
GPT-5.1 (high)
91.6
Llama-VARCO-8B-Instruct
63.3
Grok-4.1-fast
60.2
A.X-4.0 (72B)
58.6
Claude-Opus-4.5
42.7
Solar-Pro-2 (31B)(high)
41.8
HCX-007(high)
20.4
EXAONE-4.0.1-32B (high)
5.5

Avg Token Usage

Gemini-3-Pro-Preview
15034.0
Claude-Opus-4.5
12309.0
Grok-4.1-fast
10596.0
Solar-Pro-2 (31B)(high)
9159.0
A.X-4.0 (72B)
9042.0
GPT-5.1 (high)
8139.0
Deepseek-V3.2
8047.0
HCX-007(high)
5016.0
EXAONE-4.0.1-32B (high)
4747.0
Llama-VARCO-8B-Instruct
1832.0