Problem Analysis #13

51.84s
7,454 toks
Problem Statement

Let L1L_1 be the line of intersection of the planes given by the equations2x+3y+z=4andx+2y+z=5.2x + 3y + z = 4 \quad \text{and} \quad x + 2y + z = 5.Let L2L_2 be the line passing through the point P(2,1,3)P(2, -1, 3) and parallel to L1L_1. Let Π\Pi denote the plane given by the equation2x+y2z=6.2x + y - 2z = 6.Suppose that the line L2L_2 meets the plane Π\Pi at the point QQ. Let RR be the foot of the perpendicular drawn from PP to the plane Π\Pi.If the length of the line segment PQPQ is \ell and the area of PQR\triangle PQR is AA, find the value of 4$$\ell$$^2 A^2.\

Ground Truth
511758
Execution Trace
Reasoning Process

The problem asks for the value of 42A24\ell^2 A^2, where \ell is the length of segment PQPQ and AA is the area of triangle PQR\triangle PQR.

First, I will determine the direction of line L1L_1 by taking the cross product of the normal vectors of the two planes defining it. Then, I will define line L2L_2 passing through P(2,1,3)P(2, -1, 3) with this direction. Next, I will find the intersection point QQ of line L2L_2 and the plane Π:2x+y2z=6\Pi: 2x + y - 2z = 6. I will also find the point RR, which is the projection of PP onto plane Π\Pi. Since PRPR is perpendicular to the plane Π\Pi and QQ lies in Π\Pi, the triangle PQR\triangle PQR is a right-angled triangle with the right angle at RR. Finally, I will calculate =PQ\ell = PQ, h=PRh = PR, and the area A=12×PR×RQA = \frac{1}{2} \times PR \times RQ, and compute the required value.

[PYTHON] import numpy as np

Define normal vectors for the planes defining L1

n1 = np.array([2, 3, 1]) n2 = np.array([1, 2, 1])

Direction vector of L1 (and L2)

d = np.cross(n1, n2)

print(f"Direction vector d: {d}")

Point P

P = np.array([2, -1, 3])

Plane Pi: 2x + y - 2z = 6

Normal vector n_pi and constant k_pi

n_pi = np.array([2, 1, -2]) k_pi = 6

Find Q: Intersection of L2 and Pi

L2: r = P + t * d

Substitute into plane equation: n_pi . (P + t * d) = k_pi

n_pi . P + t * (n_pi . d) = k_pi

t = (k_pi - n_pi . P) / (n_pi . d)

numerator = k_pi - np.dot(n_pi, P) denominator = np.dot(n_pi, d)

if denominator == 0: print("Line is parallel to the plane.") else: t_Q = numerator / denominator Q = P + t_Q * d

# Calculate length l = PQ
l_vec = Q - P
l = np.linalg.norm(l_vec)
l_sq = np.dot(l_vec, l_vec) # l^2

# Find R: Projection of P onto Pi
# Line PR is parallel to n_pi
# R = P + s * n_pi
# Substitute into plane equation: n_pi . (P + s * n_pi) = k_pi
# s = (k_pi - n_pi . P) / (n_pi . n_pi)

s_R = (k_pi - np.dot(n_pi, P)) / np.dot(n_pi, n_pi)
R = P + s_R * n_pi

# Calculate height h = PR
h_vec = R - P
h = np.linalg.norm(h_vec)
h_sq = np.dot(h_vec, h_vec) # h^2

# Calculate RQ
rq_vec = Q - R
rq_sq = np.dot(rq_vec, rq_vec)

# Verify right triangle
# dot_prod = np.dot(h_vec, rq_vec)
# print(f"Dot product PR . RQ: {dot_prod}") # Should be 0

# Area A = 0.5 * PR * RQ
# A^2 = 0.25 * PR^2 * RQ^2
A_sq = 0.25 * h_sq * rq_sq

result = 4 * l_sq * A_sq

print(f"Direction d: {d}")
print(f"P: {P}")
print(f"Q: {Q}")
print(f"R: {R}")
print(f"l^2: {l_sq}")
print(f"h^2 (PR^2): {h_sq}")
print(f"RQ^2: {rq_sq}")
print(f"A^2: {A_sq}")
print(f"Result: {result}")

[/PYTHON]

Tool Output
[PYTHON OUTPUT] Direction d: [ 1 -1 1] P: [ 2 -1 3] Q: [-7. 8. -6.] R: [4. 0. 1.] l^2: 243.0 h^2 (PR^2): 9.0 RQ^2: 234.0 A^2: 526.5 Result: 511758.0 [/PYTHON OUTPUT]
Reasoning Process

The direction vector of L1L_1 is the cross product of the normal vectors of the two planes: [ \mathbf{d} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ 2 & 3 & 1 \ 1 & 2 & 1 \end{vmatrix} = (3(1) - 1(2))\mathbf{i} - (2(1) - 1(1))\mathbf{j} + (2(2) - 3(1))\mathbf{k} = \mathbf{i} - \mathbf{j} + \mathbf{k} = (1, -1, 1). ] The line L2L_2 passes through P(2,1,3)P(2, -1, 3) and has direction vector d=(1,1,1)\mathbf{d} = (1, -1, 1). Its parametric equations are x=2+tx = 2 + t, y=1ty = -1 - t, z=3+tz = 3 + t. To find the intersection point QQ with the plane Π:2x+y2z=6\Pi: 2x + y - 2z = 6, we substitute the parametric equations into the plane equation: [ 2(2 + t) + (-1 - t) - 2(3 + t) = 6 ] [ 4 + 2t - 1 - t - 6 - 2t = 6 ] [ -3 - t = 6 \implies t = -9. ] The point QQ corresponds to t=9t = -9: [ Q = (2 - 9, -1 - (-9), 3 - 9) = (-7, 8, -6). ] The length squared of PQPQ is 2=(72)2+(8(1))2+(63)2=(9)2+92+(9)2=81+81+81=243\ell^2 = (-7 - 2)^2 + (8 - (-1))^2 + (-6 - 3)^2 = (-9)^2 + 9^2 + (-9)^2 = 81 + 81 + 81 = 243.

RR is the foot of the perpendicular from PP to the plane Π\Pi. The distance PRPR is given by the formula for the distance from a point to a plane: [ PR = \frac{|2(2) + 1(-1) - 2(3) - 6|}{\sqrt{2^2 + 1^2 + (-2)^2}} = \frac{|4 - 1 - 6 - 6|}{\sqrt{9}} = \frac{|-9|}{3} = 3. ] So PR2=9PR^2 = 9. Since PRΠPR \perp \Pi and QQ lies in Π\Pi, PQR\triangle PQR is a right triangle with hypotenuse PQPQ. By the Pythagorean theorem, RQ2=PQ2PR2=2439=234RQ^2 = PQ^2 - PR^2 = 243 - 9 = 234. The area of PQR\triangle PQR is A=12PRRQA = \frac{1}{2} \cdot PR \cdot RQ. Thus, A2=14PR2RQ2=149234=21064=526.5A^2 = \frac{1}{4} \cdot PR^2 \cdot RQ^2 = \frac{1}{4} \cdot 9 \cdot 234 = \frac{2106}{4} = 526.5. We need to find 42A24\ell^2 A^2: [ 4\ell^2 A^2 = 4 \cdot 243 \cdot 526.5 = 243 \cdot 2106 = 511758. ]

\boxed{511758}

Final Model Output
511758

Comparative Analysis (P13) (Average across runs)

Avg Time Taken

Deepseek-V3.2
97.6
Gemini-3-Pro-Preview
51.8
Llama-VARCO-8B-Instruct
51.0
Solar-Pro-2 (31B)(high)
38.9
A.X-4.0 (72B)
35.8
HCX-007(high)
35.3
Grok-4.1-fast
29.2
GPT-5.1 (high)
22.2
Claude-Opus-4.5
21.5
EXAONE-4.0.1-32B (high)
7.0

Avg Token Usage

Solar-Pro-2 (31B)(high)
7713.0
Gemini-3-Pro-Preview
7454.0
GPT-5.1 (high)
7218.0
Grok-4.1-fast
6529.0
HCX-007(high)
5083.0
Claude-Opus-4.5
4957.0
Deepseek-V3.2
4661.0
EXAONE-4.0.1-32B (high)
4487.0
A.X-4.0 (72B)
2921.0
Llama-VARCO-8B-Instruct
1020.0