Problem Analysis #2

144.71s
10,743 toks
Problem Statement

In the following, zz is a complex number and ii is the imaginary unit. Consider the complex functionf(z)=cotzz2,f(z) = \frac{\cot z}{z^2},where cotz=1tanz\cot z = \dfrac{1}{\tan z}. For a positive integer mm, defineDm=limz0dmdzm(zcotz).D_m = \lim_{z\to 0} \frac{d^m}{dz^m}(z \cot z).If necessary, you may use D2=23D_2 = -\dfrac{2}{3} andlimznπznπsinz=(1)nfor any integer n.\lim_{z\to n\pi} \frac{z - n\pi}{\sin z} = (-1)^n\quad\text{for any integer } n.

  • [I.] Find all poles of f(z)f(z). Also, find the order of each pole.
  • [II.] Find the residue of each pole found in I.
  • [III.] Let MM be a positive integer and set R=π(2M+1)R = \pi(2M+1). For each real parameter tt with R2tR2-\dfrac{R}{2} \le t \le \dfrac{R}{2}, consider the four line segments \begin{align*} C_1:\ & z(t) = \frac{R}{2} + it, \\ C_2:\ & z(t) = -t + i\frac{R}{2}, \\ C_3:\ & z(t) = -\frac{R}{2} - it, \\ C_4:\ & z(t) = t - i\frac{R}{2}. \end{align*} These four oriented segments form the boundary of a square centered at the origin, traversed counterclockwise. For each complex integral Ik=Ckf(z)dzI_k = \displaystyle\int_{C_k} f(z)\,dz along CkC_k (k=1,2,3,4k = 1,2,3,4), find limMIk\displaystyle\lim_{M\to\infty} I_k.
  • [IV.] Let CC be the closed loop composed of the four line segments C1,C2,C3C_1, C_2, C_3, and C4C_4 in III. By applying the residue theorem to the complex integral I=Cf(z)dz, I = \oint_C f(z)\,dz, find the value of the infinite series n=11n2. \sum_{n=1}^{\infty} \frac{1}{n^2}.
  • [V.] Now replace f(z)f(z) by the complex function g(z)=cotzz2N, g(z) = \frac{\cot z}{z^{2N}}, where NN is a positive integer. By following the same contour method as in I–IV, express the infinite series n=11n2N \sum_{n=1}^{\infty} \frac{1}{n^{2N}} in terms of DmD_m. Finally, let pp be the order of the pole of f(z)f(z) at z=0z=0 (from I), and let rr be the residue of f(z)f(z) at z=0z=0 (from II). Let S2S_2 denote the value of n=11n2\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2} obtained in IV. From the expression in V, let TT be the value of n=11n2\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2} obtained by setting N=1N=1 in your general formula.Compute the integerK=999(p21)(3r)(D2)S2T.\mathcal{K}= 999\,(p^2 - 1)\,(-3r)\,(-D_2)\,\frac{S_2}{T}.\
Ground Truth
5328
Execution Trace
Reasoning Process

The problem asks us to analyze the function f(z)=cotzz2f(z) = \frac{\cot z}{z^2} and compute a value K\mathcal{K} based on its properties and related series.

1. Analysis of f(z)f(z) and Parameters

  • Poles and Order (pp): The function is f(z)=coszz2sinzf(z) = \frac{\cos z}{z^2 \sin z}. The pole at z=0z=0 comes from the z2z^2 term and the zero of sinz\sin z at z=0z=0. Since sinz=zz36+\sin z = z - \frac{z^3}{6} + \dots, the denominator behaves like z2(z)=z3z^2(z) = z^3. The numerator cos0=10\cos 0 = 1 \neq 0. Thus, the pole at z=0z=0 has order p=3p=3.

  • Residue at z=0z=0 (rr): We need the coefficient of z1z^{-1} in the Laurent series of f(z)f(z) at z=0z=0. Using the series expansion of cotz\cot z: [ \cot z = \frac{1}{z} - \frac{z}{3} - \frac{z^3}{45} - \dots ] [ f(z) = \frac{1}{z^2} \left( \frac{1}{z} - \frac{z}{3} - \frac{z^3}{45} - \dots \right) = \frac{1}{z^3} - \frac{1}{3z} - \frac{z}{45} - \dots ] The coefficient of z1z^{-1} is r=13r = -\frac{1}{3}.

  • Derivative Value (D2D_2): Dm=limz0dmdzm(zcotz)D_m = \lim_{z\to 0} \frac{d^m}{dz^m}(z \cot z). We need D2D_2. The series for zcotzz \cot z is: [ z \cot z = 1 - \frac{z^2}{3} - \frac{z^4}{45} - \dots ] This is the Taylor series k=0Dkk!zk\sum_{k=0}^\infty \frac{D_k}{k!} z^k. Comparing the coefficient of z2z^2: [ \frac{D_2}{2!} = -\frac{1}{3} \implies D_2 = -\frac{2}{3}. ]

  • Sums S2S_2 and TT: S2S_2 is the sum n=11n2\sum_{n=1}^\infty \frac{1}{n^2}. From the residue theorem on the square contour (which vanishes at infinity), we have: [ \text{Res}(f, 0) + \sum_{n \neq 0} \text{Res}(f, n\pi) = 0 ] [ -\frac{1}{3} + \sum_{n \neq 0} \frac{1}{(n\pi)^2} = 0 ] [ \frac{2}{\pi^2} \sum_{n=1}^\infty \frac{1}{n^2} = \frac{1}{3} \implies \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}. ] So S2=π26S_2 = \frac{\pi^2}{6}. TT is the value obtained from the general formula in Part V for N=1N=1. Since the derivation is consistent, T=S2T = S_2. Thus, S2T=1\frac{S_2}{T} = 1.

2. Calculation of K\mathcal{K}

The formula is: [ \mathcal{K} = 999,(p^2 - 1),(-3r),(-D_2),\frac{S_2}{T} ]

Substituting the values:

  • p=3    p21=8p = 3 \implies p^2 - 1 = 8
  • r=13    3r=1r = -\frac{1}{3} \implies -3r = 1
  • D2=23    D2=23D_2 = -\frac{2}{3} \implies -D_2 = \frac{2}{3}
  • S2T=1\frac{S_2}{T} = 1

[ \mathcal{K} = 999 \cdot 8 \cdot 1 \cdot \frac{2}{3} \cdot 1 ] [ \mathcal{K} = 999 \cdot \frac{16}{3} ] [ \mathcal{K} = 333 \cdot 16 ]

[PYTHON] print(333 * 16) [/PYTHON] 5328

[THOUGHT] The calculation is verified. p=3p=3, r=1/3r=-1/3, D2=2/3D_2=-2/3. K=999(91)(31/3)((2/3))1\mathcal{K} = 999 * (9-1) * (-3 * -1/3) * (-(-2/3)) * 1 =999812/3= 999 * 8 * 1 * 2/3 =33316=5328= 333 * 16 = 5328. [/THOUGHT]

\boxed{5328}

Tool Output
[PYTHON OUTPUT] 5328 [/PYTHON OUTPUT]
Reasoning Process

The order of the pole at z=0z=0 is p=3p=3. The residue at z=0z=0 is r=13r = -\frac{1}{3}. The value D2=23D_2 = -\frac{2}{3}. The sum S2=π26S_2 = \frac{\pi^2}{6}. The value TT obtained from the general formula for N=1N=1 is also π26\frac{\pi^2}{6}, so S2T=1\frac{S_2}{T} = 1.

Substituting these values into the expression for K\mathcal{K}: [ \mathcal{K} = 999 , (3^2 - 1) , \left(-3 \left(-\frac{1}{3}\right)\right) , \left(-\left(-\frac{2}{3}\right)\right) , (1) ] [ \mathcal{K} = 999 \cdot 8 \cdot 1 \cdot \frac{2}{3} ] [ \mathcal{K} = 333 \cdot 16 = 5328 ]

\boxed{5328}

Final Model Output
5328

Comparative Analysis (P2) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
149.6
Gemini-3-Pro-Preview
144.7
Grok-4.1-fast
89.6
Solar-Pro-2 (31B)(high)
71.1
GPT-5.1 (high)
55.4
Deepseek-V3.2
48.1
A.X-4.0 (72B)
43.9
Claude-Opus-4.5
33.5
HCX-007(high)
32.2
EXAONE-4.0.1-32B (high)
15.1

Avg Token Usage

Grok-4.1-fast
14348.0
Solar-Pro-2 (31B)(high)
13266.0
Llama-VARCO-8B-Instruct
12669.0
Gemini-3-Pro-Preview
10743.0
Deepseek-V3.2
8345.0
Claude-Opus-4.5
8331.0
EXAONE-4.0.1-32B (high)
8303.0
GPT-5.1 (high)
5813.0
HCX-007(high)
5438.0
A.X-4.0 (72B)
3825.0