Problem Analysis #22

40.68s
4,349 toks
Problem Statement

Let f(x)f(x) be a continuous function defined on the interval [0,)[0,\infty) satisfying the following condition:When 2n11x<2n1,f(x)=2n1(x+1)22n2  +  2n11,\text{When } 2^{\,n-1}-1 \le x < 2^{\,n}-1,\quad f(x) = \sqrt{\,2^{\,n-1}(x+1) - 2^{\,2n-2}} \;+\; 2^{\,n-1} - 1,for n=1,2,3,n = 1, 2, 3, \ldots.Define a sequence {an}\{a_n\} by an=2n11a_n = 2^{\,n-1} - 1 for all natural numbers nn. Find the natural number nn such thatanan+1f(x)dx=14073748332216323.\int_{a_n}^{a_{n+1}} f(x)\, dx = \frac{1407374833221632}{3}.oindent

Ground Truth
25
Execution Trace
Reasoning Process

[THOUGHT] The integral InI_n is given by 53(2n1)2(2n1)\frac{5}{3} (2^{n-1})^2 - (2^{n-1}). We are given In=14073748332216323I_n = \frac{1407374833221632}{3}. Let A=2n1A = 2^{n-1}. The equation is 53A2A=14073748332216323\frac{5}{3} A^2 - A = \frac{1407374833221632}{3}. Multiplying by 3, we get 5A23A=14073748332216325A^2 - 3A = 1407374833221632. I will solve this quadratic equation for AA and then find n=log2(A)+1n = \log_2(A) + 1. [/THOUGHT] [PYTHON] import math

target_value_numerator = 1407374833221632

Equation: 5A^2 - 3A - target_value_numerator = 0

Coefficients for quadratic formula ax^2 + bx + c = 0

a = 5 b = -3 c = -target_value_numerator

Calculate discriminant

D = b**2 - 4ac sqrt_D = math.isqrt(D)

if sqrt_D**2 == D: print("Discriminant is a perfect square.") A1 = ( -b + sqrt_D ) // (2a) A2 = ( -b - sqrt_D ) // (2a) print(f"A1 = {A1}") print(f"A2 = {A2}")

# Check if A1 is a power of 2
if A1 > 0 and (A1 & (A1 - 1) == 0):
    n = math.log2(A1) + 1
    print(f"Found n: {n}")
Tool Output
[PYTHON OUTPUT] Discriminant is a perfect square. A1 = 16777216 A2 = -16777216 Found n: 25.0 [/PYTHON OUTPUT]
Reasoning Process

The integral of f(x)f(x) from ana_n to an+1a_{n+1} is given by [ I_n = \int_{2^{n-1}-1}^{2^n-1} \left( \sqrt{2^{n-1}(x+1) - 2^{2n-2}} + 2^{n-1} - 1 \right) , dx. ] Let A=2n1A = 2^{n-1}. Then the limits are A1A-1 to 2A12A-1. The integrand is A(x+1)A2+A1\sqrt{A(x+1) - A^2} + A - 1. Let u=x+1u = x+1, so du=dxdu = dx. The limits become AA to 2A2A. [ I_n = \int_{A}^{2A} \left( \sqrt{Au - A^2} + A - 1 \right) , du = \int_{A}^{2A} \sqrt{A(u-A)} , du + \int_{A}^{2A} (A-1) , du. ] For the first part, let v=uAv = u-A, so dv=dudv = du. Limits 00 to AA. [ \int_{0}^{A} \sqrt{Av} , dv = \sqrt{A} \int_{0}^{A} v^{1/2} , dv = \sqrt{A} \left[ \frac{2}{3} v^{3/2} \right]_0^A = \sqrt{A} \cdot \frac{2}{3} A^{3/2} = \frac{2}{3} A^2. ] The second part is (A1)(2AA)=A(A1)=A2A(A-1)(2A - A) = A(A-1) = A^2 - A. Thus, In=23A2+A2A=53A2AI_n = \frac{2}{3} A^2 + A^2 - A = \frac{5}{3} A^2 - A. We are given In=14073748332216323I_n = \frac{1407374833221632}{3}. [ \frac{5}{3} A^2 - A = \frac{1407374833221632}{3} \implies 5A^2 - 3A = 1407374833221632. ] Solving this quadratic equation for AA yields A=16777216A = 16777216. Since A=2n1A = 2^{n-1}, we have 2n1=16777216=2242^{n-1} = 16777216 = 2^{24}. Therefore, n1=24n-1 = 24, which implies n=25n = 25.

\boxed{25}

Final Model Output
25

Comparative Analysis (P22) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
98.6
Deepseek-V3.2
92.3
Solar-Pro-2 (31B)(high)
84.2
HCX-007(high)
62.4
Gemini-3-Pro-Preview
40.7
A.X-4.0 (72B)
35.0
Claude-Opus-4.5
32.9
Grok-4.1-fast
28.1
GPT-5.1 (high)
25.6
EXAONE-4.0.1-32B (high)
5.2

Avg Token Usage

Solar-Pro-2 (31B)(high)
13592.0
Claude-Opus-4.5
9246.0
HCX-007(high)
6449.0
Deepseek-V3.2
6445.0
Grok-4.1-fast
6127.0
Llama-VARCO-8B-Instruct
5446.0
Gemini-3-Pro-Preview
4349.0
GPT-5.1 (high)
3937.0
EXAONE-4.0.1-32B (high)
3930.0
A.X-4.0 (72B)
2882.0