Problem Analysis #23

88.23s
14,819 toks
Problem Statement

Consider the ellipsex2a2+y2b2=1(0<b<a),\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad (0 < b < a),and suppose that one focus of this ellipse coincides with the focus of the parabolay2=4px(p>0).y^2 = 4px \qquad (p > 0).Let the two intersection points of the parabola and the ellipse be denoted byP1\mathrm{P}_1 and P2\mathrm{P}_2.Let AA be the intersection point of the tangent line to the parabola at P1\mathrm{P}_1and the tangent line to the parabola at P2\mathrm{P}_2.Given that the angle P1AP2=60\angle \mathrm{P}_1 A \mathrm{P}_2 = 60^\circ, and that for any real number tt,t\lfloor t \rfloor denotes the greatest integer not exceeding tt, determine the value ofa3p3.\left\lfloor \frac{a^3}{p^3} \right\rfloor .oindent

Ground Truth
100
Execution Trace
Reasoning Process

[PYTHON] import math

Calculate 50 + 19 * sqrt(7)

val = 50 + 19 * math.sqrt(7) print(f"{val=}") print(f"{math.floor(val)=}") [/PYTHON] ps

  1. Identify the geometric setup:

    • Ellipse: x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (0<b<a0 < b < a).
    • Parabola: y2=4pxy^2 = 4px (p>0p > 0).
    • Focus of parabola: Fp=(p,0)F_p = (p, 0).
    • Foci of ellipse: Fe=(±c,0)F_{e} = (\pm c, 0) where c=a2b2c = \sqrt{a^2 - b^2}.
    • Condition: One focus coincides. Since p>0p>0, it must be the positive focus (c,0)(c, 0). So c=pc = p.
    • Thus p2=a2b2    b2=a2p2p^2 = a^2 - b^2 \implies b^2 = a^2 - p^2.
  2. Intersection points P1,P2P_1, P_2:

    • Substitute y2=4pxy^2 = 4px into ellipse equation: x2a2+4pxa2p2=1\frac{x^2}{a^2} + \frac{4px}{a^2 - p^2} = 1.
    • Let u=a/pu = a/p. Then a=upa = up.
    • x2u2p2+4pxp2(u21)=1\frac{x^2}{u^2 p^2} + \frac{4px}{p^2(u^2 - 1)} = 1.
    • x2u2p2+4xp(u21)1=0\frac{x^2}{u^2 p^2} + \frac{4x}{p(u^2 - 1)} - 1 = 0.
    • Multiply by u2p2(u21)u^2 p^2 (u^2 - 1): (u21)x2+4pu2xu2p2(u21)=0(u^2 - 1) x^2 + 4 p u^2 x - u^2 p^2 (u^2 - 1) = 0.
    • This gives the x-coordinates of intersection. Let the positive root be x0x_0.
  3. Tangent intersection AA:

    • Tangents at P1(x0,y0)P_1(x_0, y_0) and P2(x0,y0)P_2(x_0, -y_0) to the parabola y2=4pxy^2 = 4px.
    • Tangent at (x0,y0)(x_0, y_0): yy0=2p(x+x0)y y_0 = 2p(x + x_0).
    • Tangent at (x0,y0)(x_0, -y_0): yy0=2p(x+x0)-y y_0 = 2p(x + x_0).
    • Intersection AA is at x=x0,y=0x = -x_0, y = 0. So A=(x0,0)A = (-x_0, 0).
  4. Angle condition:

    • P1AP2=60\angle P_1 A P_2 = 60^\circ.
    • Since AA is on x-axis and P1,P2P_1, P_2 are symmetric, P1AX=30\angle P_1 A X = 30^\circ.
    • Slope of AP1A P_1 is tan30=1/3\tan 30^\circ = 1/\sqrt{3}.
    • Slope is y00x0(x0)=y02x0\frac{y_0 - 0}{x_0 - (-x_0)} = \frac{y_0}{2x_0}.
    • So y02x0=13    3y02=4x02\frac{y_0}{2x_0} = \frac{1}{\sqrt{3}} \implies 3 y_0^2 = 4 x_0^2.
    • Since P1P_1 is on parabola, y02=4px0y_0^2 = 4px_0.
    • 3(4px0)=4x02    3p=x03(4px_0) = 4x_0^2 \implies 3p = x_0 (since x00x_0 \neq 0).
  5. Solve for a/pa/p:

    • Substitute x0=3px_0 = 3p into the intersection equation: (u21)(3p)2+4pu2(3p)u2p2(u21)=0(u^2 - 1) (3p)^2 + 4 p u^2 (3p) - u^2 p^2 (u^2 - 1) = 0.
    • Divide by p2p^2: 9(u21)+12u2u2(u21)=09(u^2 - 1) + 12 u^2 - u^2 (u^2 - 1) = 0. 9u29+12u2u4+u2=09u^2 - 9 + 12u^2 - u^4 + u^2 = 0. u4+22u29=0-u^4 + 22u^2 - 9 = 0. u422u2+9=0u^4 - 22u^2 + 9 = 0.
    • Solve for u2u^2: u2=22±484362=11±47u^2 = \frac{22 \pm \sqrt{484 - 36}}{2} = 11 \pm 4\sqrt{7}.
    • Since b2=a2p2=p2(u21)>0b^2 = a^2 - p^2 = p^2(u^2 - 1) > 0, we need u2>1u^2 > 1.
    • 11471110.58=0.42<111 - 4\sqrt{7} \approx 11 - 10.58 = 0.42 < 1.
    • 11+4721.58>111 + 4\sqrt{7} \approx 21.58 > 1.
    • So u2=11+47u^2 = 11 + 4\sqrt{7}.
  6. Calculate target value:

    • We need u3\lfloor u^3 \rfloor.
    • u=11+47=(7+2)2=2+7u = \sqrt{11 + 4\sqrt{7}} = \sqrt{(\sqrt{7} + 2)^2} = 2 + \sqrt{7}.
    • u3=(2+7)3=8+127+42+77=50+197u^3 = (2 + \sqrt{7})^3 = 8 + 12\sqrt{7} + 42 + 7\sqrt{7} = 50 + 19\sqrt{7}.
    • 19719×2.64575=50.26919\sqrt{7} \approx 19 \times 2.64575 = 50.269.
    • u3100.269u^3 \approx 100.269.
    • Floor is 100.

The Python code confirmed the calculation. val=100.269...val = 100.269... val=100\lfloor val \rfloor = 100.

Double check if there are any other constraints. 0<b<a0 < b < a. b2=a2p2>0    a>p    u>1b^2 = a^2 - p^2 > 0 \implies a > p \implies u > 1. Checked. b<a    a2p2<a    a2p2<a2    p2<0b < a \implies \sqrt{a^2 - p^2} < a \implies a^2 - p^2 < a^2 \implies -p^2 < 0, which is always true for p>0p > 0. Intersection points must be real. Discriminant of (u21)x2+4pu2xu2p2(u21)=0(u^2 - 1) x^2 + 4 p u^2 x - u^2 p^2 (u^2 - 1) = 0. D=(4pu2)24(u21)(u2p2(u21))D = (4 p u^2)^2 - 4 (u^2 - 1) (- u^2 p^2 (u^2 - 1)) D=16p2u4+4u2p2(u21)2D = 16 p^2 u^4 + 4 u^2 p^2 (u^2 - 1)^2 Since u2>1u^2 > 1, D>0D > 0, so real roots exist. One root is positive, one negative. We took the positive one x0x_0. Everything seems consistent.

Final Answer seems to be 100.

One detail: "intersection point of the tangent line to the parabola at P1 and the tangent line to the parabola at P2". Parabola is y2=4pxy^2 = 4px. Tangent at (x1,y1)(x_1, y_1) is yy1=2p(x+x1)y y_1 = 2p(x + x_1). We found intersection is (x0,0)(-x_0, 0). This is a standard property of parabolas. The intersection of tangents at the endpoints of a focal chord lies on the directrix. Wait, is P1P2P_1 P_2 a focal chord? The chord passes through (x0,y0)(x_0, y_0) and (x0,y0)(x_0, -y_0). The line segment is vertical x=x0x = x_0. Does it pass through the focus (p,0)(p, 0)? Only if x0=px_0 = p. But we found x0=3px_0 = 3p. So it is not a focal chord. The directrix is x=px = -p. The intersection of tangents is at x=x0=3px = -x_0 = -3p. So AA is at (3p,0)(-3p, 0). This is consistent with our derivation. The property about the directrix applies to focal chords. Since this is not a focal chord, the intersection is not on the directrix. However, the intersection of tangents at points with the same x-coordinate (a chord perpendicular to the axis of symmetry) always lies on the axis of symmetry. Here P1P_1 and P2P_2 share x0x_0. So the chord is vertical. Tangents intersect on the axis of symmetry (x-axis). We found A=(x0,0)A = (-x_0, 0). This is correct.

Let's re-verify the angle calculation. A=(x0,0)A = (-x_0, 0), P1=(x0,y0)P_1 = (x_0, y_0). Vector AP1=(2x0,y0)AP_1 = (2x_0, y_0). Vector AP2=(2x0,y0)AP_2 = (2x_0, -y_0). Cosine of angle θ=60\theta = 60^\circ: cos60=AP1AP2AP1AP2\cos 60^\circ = \frac{AP_1 \cdot AP_2}{|AP_1| |AP_2|}. AP1AP2=4x02y02AP_1 \cdot AP_2 = 4x_0^2 - y_0^2. AP1=4x02+y02|AP_1| = \sqrt{4x_0^2 + y_0^2}. AP2=4x02+y02|AP_2| = \sqrt{4x_0^2 + y_0^2}. So 12=4x02y024x02+y02\frac{1}{2} = \frac{4x_0^2 - y_0^2}{4x_0^2 + y_0^2}. 4x02+y02=2(4x02y02)=8x022y024x_0^2 + y_0^2 = 2(4x_0^2 - y_0^2) = 8x_0^2 - 2y_0^2. 3y02=4x023y_0^2 = 4x_0^2. This matches my slope calculation tan30=y0/(2x0)    1/3=y02/(4x02)    4x02=3y02\tan 30^\circ = y_0 / (2x_0) \implies 1/3 = y_0^2 / (4x_0^2) \implies 4x_0^2 = 3y_0^2. Correct.

Then y02=4px0y_0^2 = 4px_0. 3(4px0)=4x02    3p=x03(4px_0) = 4x_0^2 \implies 3p = x_0. Correct.

Equation substitution: (a2p2)(3p)2+4pa2(3p)a2(a2p2)=0(a^2 - p^2) (3p)^2 + 4p a^2 (3p) - a^2 (a^2 - p^2) = 0. 9p2a29p4+12p2a2a4+a2p2=09p^2 a^2 - 9p^4 + 12p^2 a^2 - a^4 + a^2 p^2 = 0. a4+22a2p29p4=0-a^4 + 22 a^2 p^2 - 9p^4 = 0. u422u2+9=0u^4 - 22u^2 + 9 = 0. Correct.

Solution u2=11+47u^2 = 11 + 4\sqrt{7}. u=7+2u = \sqrt{7} + 2. u3=50+197u^3 = 50 + 19\sqrt{7}. Floor is 100.

Is there any ambiguity in "one focus of this ellipse coincides with the focus of the parabola"? Parabola focus is (p,0)(p, 0). Ellipse foci are (±c,0)(\pm c, 0). Could it be (c,0)=(p,0)(-c, 0) = (p, 0)? c=p-c = p. Since c=a2b2>0c = \sqrt{a^2 - b^2} > 0 and p>0p > 0, this is impossible. So it must be (c,0)=(p,0)(c, 0) = (p, 0). Correct.

Is there any ambiguity in "intersection point of the tangent line"? No, standard tangents.

Is there any ambiguity in "angle P1 A P2"? No, standard angle.

Is there any ambiguity in "greatest integer"? No, floor function.

The value is uniquely determined.

Let's do a quick check on the value of 19719\sqrt{7}. 192=36119^2 = 361. 361×7=2527361 \times 7 = 2527. 2527\sqrt{2527}. 502=250050^2 = 2500. 512=260151^2 = 2601. So 2527\sqrt{2527} is slightly larger than 50. 50.2...50.2... So 50+50.2...=100.2...50 + 50.2... = 100.2... Floor is 100.

The calculation is robust.

One final check on the problem statement details. 0<b<a0 < b < a. p>0p > 0. P1AP2=60\angle P_1 A P_2 = 60^\circ. Everything used.

Could u2=1147u^2 = 11 - 4\sqrt{7} be a valid solution? 11470.4211 - 4\sqrt{7} \approx 0.42. u2=a2/p2u^2 = a^2/p^2. b2=a2p2=p2(u21)b^2 = a^2 - p^2 = p^2(u^2 - 1). If u2<1u^2 < 1, then b2<0b^2 < 0, which is impossible for real bb. So u2=11+47u^2 = 11 + 4\sqrt{7} is the only valid solution.

The result is 100.

One small thing: The problem asks for a3p3\lfloor \frac{a^3}{p^3} \rfloor. This is u3\lfloor u^3 \rfloor. We calculated u3=50+197u^3 = 50 + 19\sqrt{7}. Is it possible that due to floating point precision, it's extremely close to an integer? 197=252719\sqrt{7} = \sqrt{2527}. Is 2527 a perfect square? 502=250050^2 = 2500. 512=260151^2 = 2601. No. Is 50+252750 + \sqrt{2527} an integer? No. Is it close to 101? 10150=51101 - 50 = 51. 2527<51\sqrt{2527} < 51. So 50+2527<10150 + \sqrt{2527} < 101. Is it close to 100? 10050=50100 - 50 = 50. 2527>50\sqrt{2527} > 50. So 50+2527>10050 + \sqrt{2527} > 100. So it is strictly between 100 and 101. So the floor is exactly 100.

I am confident in the result.

[THOUGHT] The problem asks for a3/p3\lfloor a^3/p^3 \rfloor.

  1. Geometric Setup:
    • Ellipse: x2/a2+y2/b2=1x^2/a^2 + y^2/b^2 = 1. Foci at (±c,0)(\pm c, 0) with c2=a2b2c^2 = a^2 - b^2.
    • Parabola: y2=4pxy^2 = 4px. Focus at (p,0)(p, 0).
    • Coinciding focus: c=p    a2b2=p2    b2=a2p2c = p \implies a^2 - b^2 = p^2 \implies b^2 = a^2 - p^2.
  2. Intersection Points:
    • Substitute y2=4pxy^2 = 4px into ellipse eq: (a2p2)x2+4pa2xa2(a2p2)=0(a^2 - p^2)x^2 + 4pa^2x - a^2(a^2 - p^2) = 0.
    • Let intersection x-coordinate be x0x_0.
  3. Tangents Intersection:
    • Tangents to parabola at (x0,±y0)(x_0, \pm y_0) intersect at A(x0,0)A(-x_0, 0).
  4. Angle Condition:
    • P1AP2=60    P1AX=30\angle P_1 A P_2 = 60^\circ \implies \angle P_1 A X = 30^\circ.
    • Slope of AP1AP_1 is tan30=1/3\tan 30^\circ = 1/\sqrt{3}.
    • Slope is y0/(2x0)y_0 / (2x_0).
    • y0/(2x0)=1/3    3y02=4x02y_0 / (2x_0) = 1/\sqrt{3} \implies 3y_0^2 = 4x_0^2.
    • Using y02=4px0y_0^2 = 4px_0, we get 12px0=4x02    x0=3p12px_0 = 4x_0^2 \implies x_0 = 3p.
  5. Solving for a/pa/p:
    • Substitute x0=3px_0 = 3p into the quadratic intersection equation.
    • Resulting equation for u=a/pu = a/p: u422u2+9=0u^4 - 22u^2 + 9 = 0.
    • Solutions for u2u^2: 11±4711 \pm 4\sqrt{7}.
    • Condition b2>0    u2>1b^2 > 0 \implies u^2 > 1, so u2=11+47u^2 = 11 + 4\sqrt{7}.
  6. Calculate Value:
    • u=11+47=2+7u = \sqrt{11 + 4\sqrt{7}} = 2 + \sqrt{7}.
    • u3=(2+7)3=50+197u^3 = (2 + \sqrt{7})^3 = 50 + 19\sqrt{7}.
    • 197=252719\sqrt{7} = \sqrt{2527}. Since 502=2500<2527<2601=51250^2 = 2500 < 2527 < 2601 = 51^2, 50<197<5150 < 19\sqrt{7} < 51.
    • 100<50+197<101100 < 50 + 19\sqrt{7} < 101.
    • Floor is 100.

[/THOUGHT] \boxed{100}

Tool Output
[PYTHON OUTPUT] val=100.26927491022722 math.floor(val)=100 [/PYTHON OUTPUT]
Reasoning Process

The value of (\frac{a^3}{p^3}) is (50 + 19\sqrt{7}). Since (19\sqrt{7} = \sqrt{2527}) and (50^2 = 2500 < 2527 < 2601 = 51^2), we have (50 < 19\sqrt{7} < 51). Thus, (100 < 50 + 19\sqrt{7} < 101). The greatest integer not exceeding this value is 100.

\boxed{100}

Final Model Output
100

Comparative Analysis (P23) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
139.5
A.X-4.0 (72B)
92.0
Gemini-3-Pro-Preview
88.2
Deepseek-V3.2
69.9
Solar-Pro-2 (31B)(high)
69.5
Grok-4.1-fast
51.6
GPT-5.1 (high)
50.4
Claude-Opus-4.5
24.1
HCX-007(high)
23.8
EXAONE-4.0.1-32B (high)
9.3

Avg Token Usage

Gemini-3-Pro-Preview
14819.0
Solar-Pro-2 (31B)(high)
11576.0
Deepseek-V3.2
11518.0
Grok-4.1-fast
10780.0
Claude-Opus-4.5
6166.0
EXAONE-4.0.1-32B (high)
5468.0
GPT-5.1 (high)
5435.0
Llama-VARCO-8B-Instruct
3993.0
HCX-007(high)
3875.0
A.X-4.0 (72B)
2719.0