Problem Analysis #35

24.40s
4,633 toks
Problem Statement

A population is normally distributed with mean mm and standard deviation 55. From this population, a random sample of size 3636 is taken, and a 99%99\% confidence interval for the population mean mm is constructed using the sample mean. The resulting confidence interval is 1.2 $$\leq$$ m $$\leq$$ a. Find the value of aa. (Here, ZZ denotes a standard normal random variable, and use P(Z2.58)=0.99\text{P}(|Z| \leq 2.58) = 0.99.) [3 points]Compute 10a10a.\

Ground Truth
55
Execution Trace
Reasoning Process

[THOUGHT] The problem asks for the upper bound aa of a 99% confidence interval for the population mean mm. The population standard deviation is σ=5\sigma = 5. The sample size is n=36n = 36. The confidence interval is given as 1.2ma1.2 \leq m \leq a. The formula for a confidence interval for the mean with known σ\sigma is xˉ±zσn\bar{x} \pm z^* \frac{\sigma}{\sqrt{n}}. Here, zz^* corresponds to the 99% confidence level. The problem states to use P(Z2.58)=0.99P(|Z| \leq 2.58) = 0.99, so z=2.58z^* = 2.58. The lower bound is xˉzσn=1.2\bar{x} - z^* \frac{\sigma}{\sqrt{n}} = 1.2. The upper bound is a=xˉ+zσna = \bar{x} + z^* \frac{\sigma}{\sqrt{n}}. The margin of error is E=zσnE = z^* \frac{\sigma}{\sqrt{n}}. So, 1.2=xˉE1.2 = \bar{x} - E and a=xˉ+Ea = \bar{x} + E. This implies a1.2=2Ea - 1.2 = 2E, or a=1.2+2Ea = 1.2 + 2E. I need to calculate EE and then aa, and finally 10a10a.

Steps:

  1. Define σ=5\sigma = 5, n=36n = 36, z=2.58z^* = 2.58.
  2. Calculate standard error SE=σ/nSE = \sigma / \sqrt{n}.
  3. Calculate margin of error E=z×SEE = z^* \times SE.
  4. Use the lower bound to find xˉ\bar{x} (though not strictly necessary if I just add 2E2E to the lower bound). Actually, Lower Bound = xˉE=1.2\bar{x} - E = 1.2. Upper Bound a=xˉ+E=(xˉE)+2E=1.2+2Ea = \bar{x} + E = (\bar{x} - E) + 2E = 1.2 + 2E.
  5. Calculate aa.
  6. Calculate 10a10a. [/THOUGHT] [PYTHON] sigma = 5 n = 36 z_star = 2.58 lower_bound = 1.2

Standard Error

se = sigma / (n**0.5)

Margin of Error

E = z_star * se

Upper bound a

a = lower_bound + 2 * E

a = lower_bound + 2 * E

result = 10 * a print(f"{se=}") print(f"{E=}") print(f"{a=}") print(f"{result=}") [/PYTHON] [THOUGHT] The code calculated a=5.5a = 5.5 and 10a=55.010a = 55.0. Let's double check the logic. Confidence Interval: xˉ±zσn\bar{x} \pm z \frac{\sigma}{\sqrt{n}}. Given: 1.2ma1.2 \le m \le a. Lower bound: xˉ2.58536=1.2\bar{x} - 2.58 \cdot \frac{5}{\sqrt{36}} = 1.2. 560.8333\frac{5}{6} \approx 0.8333. E=2.5856=2.580.8333...=12.96=2.15E = 2.58 \cdot \frac{5}{6} = 2.58 \cdot 0.8333... = \frac{12.9}{6} = 2.15. Lower bound: xˉ2.15=1.2    xˉ=3.35\bar{x} - 2.15 = 1.2 \implies \bar{x} = 3.35. Upper bound aa: xˉ+2.15=3.35+2.15=5.5\bar{x} + 2.15 = 3.35 + 2.15 = 5.5. Then 10a=105.5=5510a = 10 \cdot 5.5 = 55.

The calculation holds up. SE=5/6SE = 5/6. E=2.58(5/6)=1.29(5/3)=0.435=2.15E = 2.58 * (5/6) = 1.29 * (5/3) = 0.43 * 5 = 2.15. a=1.2+22.15=1.2+4.3=5.5a = 1.2 + 2 * 2.15 = 1.2 + 4.3 = 5.5. 10a=5510a = 55.

The problem asks for 10a10a. The value is 55. [/THOUGHT] \boxed{55}

Tool Output
[PYTHON OUTPUT] se=0.8333333333333334 E=2.1500000000000004 a=5.500000000000001 result=55.00000000000001 [/PYTHON OUTPUT]
Reasoning Process

The confidence interval is given by xˉ±E\bar{x} \pm E, where E=zσnE = z^* \frac{\sigma}{\sqrt{n}}. Given: σ=5\sigma = 5 n=36n = 36 z=2.58z^* = 2.58 (for 99% confidence) Lower bound = 1.2

First, we calculate the margin of error EE: E=2.58×536=2.58×56=2.58×0.8333=2.15E = 2.58 \times \frac{5}{\sqrt{36}} = 2.58 \times \frac{5}{6} = 2.58 \times 0.8333\dots = 2.15

The confidence interval is [xˉE,xˉ+E][\bar{x} - E, \bar{x} + E]. We know the lower bound is 1.21.2, so: xˉE=1.2\bar{x} - E = 1.2 The upper bound aa is: a=xˉ+Ea = \bar{x} + E We can express aa in terms of the lower bound and EE: a=(xˉE)+2E=1.2+2(2.15)=1.2+4.3=5.5a = (\bar{x} - E) + 2E = 1.2 + 2(2.15) = 1.2 + 4.3 = 5.5

The problem asks for the value of 10a10a: 10a=10×5.5=5510a = 10 \times 5.5 = 55

\boxed{55}

Final Model Output
55

Comparative Analysis (P35) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
636.4
Llama-VARCO-8B-Instruct
80.1
HCX-007(high)
49.6
Deepseek-V3.2
47.8
Gemini-3-Pro-Preview
24.4
Solar-Pro-2 (31B)(high)
16.4
Claude-Opus-4.5
13.8
A.X-4.0 (72B)
13.8
Grok-4.1-fast
10.6
GPT-5.1 (high)
7.8

Avg Token Usage

Llama-VARCO-8B-Instruct
6041.0
HCX-007(high)
5122.0
Gemini-3-Pro-Preview
4633.0
Solar-Pro-2 (31B)(high)
4521.0
Grok-4.1-fast
4352.0
A.X-4.0 (72B)
3481.0
Claude-Opus-4.5
3452.0
Deepseek-V3.2
2931.0
GPT-5.1 (high)
2481.0
EXAONE-4.0.1-32B (high)
1752.0