Problem Analysis #36

684.36s
5,840 toks
Problem Statement

A discrete random variable XX takes integer values from 00 to 44, and its probability mass function is given byP(X=x)={2x112(x=0,1,2,3),a(x=4),\text{P}(X = x) = \begin{cases}\dfrac{|2x - 1|}{12} & (x = 0, 1, 2, 3), \\[4pt]a & (x = 4),\end{cases}where aa is a nonzero constant. ComputeV(1aX).\text{V}\left(\dfrac{1}{a}X\right).[3 points]\

Ground Truth
45
Execution Trace
Reasoning Process

[PYTHON] from fractions import Fraction

def solve_variance(): # Define probabilities for x = 0, 1, 2, 3 # P(X=x) = |2x - 1| / 12 probs = {} sum_p_first_four = 0 for x in range(4): p = Fraction(abs(2*x - 1), 12) probs[x] = p sum_p_first_four += p

# Calculate a
# Sum of all probs is 1
# sum_p_first_four + a = 1
a = 1 - sum_p_first_four
probs[4] = a

print(f"a = {a}")
print(f"Probabilities: {probs}")

# Calculate E[X]
expected_value = sum(x * probs[x] for x in probs)
print(f"E[X] = {expected_value}")

# Calculate E[X^2]
expected_value_sq = sum((x**2) * probs[x] for x in probs)
print(f"E[X^2] = {expected_value_sq}")

# Calculate V(X)
variance_x = expected_value_sq - expected_value**2
print(f"V(X) = {variance_x}")

# Calculate V((1/a)X) = (1/a)^2 * V(X)
# Since a is a Fraction, we can do this directly
target_variance = (1/a)**2 * variance_x
print(f"V((1/a)X) = {target_variance}")

return target_variance

result = solve_variance() print(f"Result: {result}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] a = 1/6 Probabilities: {0: Fraction(1, 12), 1: Fraction(1, 12), 2: Fraction(1, 4), 3: Fraction(5, 12), 4: Fraction(1, 6)} E[X] = 5/2 E[X^2] = 15/2 V(X) = 5/4 V((1/a)X) = 45 Result: 45 [/PYTHON OUTPUT]
Reasoning Process

The probability mass function is defined as: [P(X=x) = \frac{|2x-1|}{12} \quad \text{for } x \in {0, 1, 2, 3}] [P(X=4) = a]

First, we calculate the probabilities for x=0,1,2,3x=0, 1, 2, 3:

  • P(X=0)=112=112P(X=0) = \frac{|-1|}{12} = \frac{1}{12}
  • P(X=1)=112=112P(X=1) = \frac{|1|}{12} = \frac{1}{12}
  • P(X=2)=312=312P(X=2) = \frac{|3|}{12} = \frac{3}{12}
  • P(X=3)=512=512P(X=3) = \frac{|5|}{12} = \frac{5}{12}

The sum of these probabilities is 1+1+3+512=1012=56\frac{1+1+3+5}{12} = \frac{10}{12} = \frac{5}{6}. Since the total probability must sum to 1, we have: [\frac{5}{6} + a = 1 \implies a = \frac{1}{6}]

Next, we calculate the expected value E[X]E[X] and E[X2]E[X^2]: [E[X] = \sum x P(X=x) = 0\cdot\frac{1}{12} + 1\cdot\frac{1}{12} + 2\cdot\frac{3}{12} + 3\cdot\frac{5}{12} + 4\cdot\frac{2}{12} = \frac{0+1+6+15+8}{12} = \frac{30}{12} = \frac{5}{2}] [E[X^2] = \sum x^2 P(X=x) = 0\cdot\frac{1}{12} + 1\cdot\frac{1}{12} + 4\cdot\frac{3}{12} + 9\cdot\frac{5}{12} + 16\cdot\frac{2}{12} = \frac{0+1+12+45+32}{12} = \frac{90}{12} = \frac{15}{2}]

The variance of XX is: [V(X) = E[X^2] - (E[X])^2 = \frac{15}{2} - \left(\frac{5}{2}\right)^2 = \frac{30}{4} - \frac{25}{4} = \frac{5}{4}]

We need to compute V(1aX)V\left(\frac{1}{a}X\right). Since a=16a = \frac{1}{6}, 1a=6\frac{1}{a} = 6. Using the property V(cX)=c2V(X)V(cX) = c^2 V(X): [V(6X) = 6^2 V(X) = 36 \cdot \frac{5}{4} = 9 \cdot 5 = 45]

\boxed{45}

Final Model Output
45

Comparative Analysis (P36) (Average across runs)

Avg Time Taken

Gemini-3-Pro-Preview
684.4
EXAONE-4.0.1-32B (high)
193.2
Deepseek-V3.2
67.4
Llama-VARCO-8B-Instruct
62.2
HCX-007(high)
36.9
Solar-Pro-2 (31B)(high)
34.2
A.X-4.0 (72B)
25.7
Claude-Opus-4.5
14.8
Grok-4.1-fast
9.0
GPT-5.1 (high)
8.3

Avg Token Usage

EXAONE-4.0.1-32B (high)
43263.0
Solar-Pro-2 (31B)(high)
6659.0
Gemini-3-Pro-Preview
5840.0
HCX-007(high)
4585.0
Grok-4.1-fast
3971.0
Claude-Opus-4.5
3958.0
Deepseek-V3.2
3770.0
GPT-5.1 (high)
2953.0
Llama-VARCO-8B-Instruct
2843.0
A.X-4.0 (72B)
2312.0