Problem Analysis #38

57.44s
10,165 toks
Problem Statement

Let aa be a natural number with a6a \leq 6. Using one die and one coin, perform the following experiment.\begin{center}\fbox{\begin{minipage}{0.9\textwidth}Roll the die once.\quad-- If the outcome is less than or equal to aa, toss the coin 55 times and record the number of heads.\quad-- If the outcome is greater than aa, toss the coin 33 times and record the number of heads.\end{minipage}}\end{center}Repeat this experiment 1920019200 times, and let XX be the number of times the recorded value is 33. Suppose that E(X)=4800\text{E}(X) = 4800. Using the standard normal table on the right, computeP(X4800+30a),\text{P}(X \leq 4800 + 30a),and let this value be kk. Compute 1000 $$\times$$ k. [4 points]\begin{center}\begin{tabular}{|c|c|}\hlinezz & P(0Zz)\text{P}(0 \leq Z \leq z) \\hline0.5 & 0.191 \\hline1.0 & 0.341 \\hline1.5 & 0.433 \\hline2.0 & 0.477 \\hline2.5 & 0.494 \\hline3.0 & 0.499 \\hline\end{tabular}\end{center}\

Ground Truth
977
Execution Trace
Reasoning Process

[THOUGHT] The problem asks us to find the value of 1000×k1000 \times k, where k=P(X4800+30a)k = P(X \le 4800 + 30a). First, I need to determine the value of aa. Let YY be the random variable representing the number of heads recorded in a single experiment. The experiment has two cases based on the die roll DD:

  1. If DaD \le a (probability a/6a/6), toss coin 5 times. Let H5H_5 be heads in 5 tosses. We record H5H_5.
  2. If D>aD > a (probability (6a)/6(6-a)/6), toss coin 3 times. Let H3H_3 be heads in 3 tosses. We record H3H_3.

We are interested in the event that the recorded value is 3. Let pp be the probability of this event in a single experiment. p=P(recorded value=3)=P(Da)P(H5=3)+P(D>a)P(H3=3)p = P(\text{recorded value} = 3) = P(D \le a) P(H_5 = 3) + P(D > a) P(H_3 = 3).

For a fair coin: P(H5=3)=(53)(0.5)5=10×132=1032=516P(H_5 = 3) = \binom{5}{3} (0.5)^5 = 10 \times \frac{1}{32} = \frac{10}{32} = \frac{5}{16}. P(H3=3)=(33)(0.5)3=1×18=18P(H_3 = 3) = \binom{3}{3} (0.5)^3 = 1 \times \frac{1}{8} = \frac{1}{8}.

So, p=a6×516+6a6×18p = \frac{a}{6} \times \frac{5}{16} + \frac{6-a}{6} \times \frac{1}{8}.

The experiment is repeated n=19200n = 19200 times. Let XX be the number of times the recorded value is 3. XX follows a Binomial distribution B(n,p)B(n, p). The expected value is given as E(X)=4800E(X) = 4800. Since E(X)=n×pE(X) = n \times p, we have 19200×p=480019200 \times p = 4800. This allows us to solve for pp, and subsequently for aa.

Once aa is found, we need to compute P(X4800+30a)P(X \le 4800 + 30a). Since nn is large, we can approximate the Binomial distribution with a Normal distribution N(μ,σ2)N(\mu, \sigma^2), where μ=np\mu = np and σ=np(1p)\sigma = \sqrt{np(1-p)}. We are given μ=4800\mu = 4800. We need to find P(X4800+30a)P(Z(4800+30a)μσ)P(X \le 4800 + 30a) \approx P(Z \le \frac{(4800 + 30a) - \mu}{\sigma}). Note: The problem provides a standard normal table, suggesting this approximation is intended. Continuity correction might or might not be expected, but usually with such large numbers and the phrasing "Using the standard normal table", standard approximation is key. However, I should check if continuity correction (XKX<K+0.5X \le K \to X < K + 0.5) significantly changes the Z-score given the table values. Usually, textbook problems align with the table values (0.5, 1.0, etc.).

Let's calculate aa first using Python.

[/THOUGHT] [PYTHON] from sympy import symbols, solve

Define variables

a = symbols('a')

Probabilities

p_H5_3 = 10 / 32 # 5C3 * (1/2)^5 p_H3_3 = 1 / 8 # 3C3 * (1/2)^3

Probability p of recording a 3 in one experiment

p = (a/6) * p_H5_3 + ((6-a)/6) * p_H3_3

p = (a/6) * p_H5_3 + ((6-a)/6) * p_H3_3

Expected value E(X) = n * p

n = 19200 E_X = n * p

Given E(X) = 4800

equation = E_X - 4800

Solve for a

sol_a = solve(equation, a) print(f"{sol_a=}") [/PYTHON] [THOUGHT] The code output shows sol_a=[4]. So a=4a = 4. Now I have a=4a=4. The probability pp is 4800/19200=1/4=0.254800 / 19200 = 1/4 = 0.25. Let's verify pp with a=4a=4: p=46516+2618=23516+1318=524+124=624=14p = \frac{4}{6} \frac{5}{16} + \frac{2}{6} \frac{1}{8} = \frac{2}{3} \frac{5}{16} + \frac{1}{3} \frac{1}{8} = \frac{5}{24} + \frac{1}{24} = \frac{6}{24} = \frac{1}{4}. Correct.

Now we need to compute P(X4800+30a)P(X \le 4800 + 30a). Substitute a=4a=4: target value is 4800+30(4)=4800+120=49204800 + 30(4) = 4800 + 120 = 4920. So we want P(X4920)P(X \le 4920). XB(n,p)X \sim B(n, p) with n=19200,p=0.25n=19200, p=0.25. Mean μ=4800\mu = 4800. Variance σ2=np(1p)=4800×0.75=3600\sigma^2 = np(1-p) = 4800 \times 0.75 = 3600. Standard deviation σ=3600=60\sigma = \sqrt{3600} = 60.

We want P(X4920)P(X \le 4920). Using Normal approximation: Z=Xμσ=4920480060=12060=2.0Z = \frac{X - \mu}{\sigma} = \frac{4920 - 4800}{60} = \frac{120}{60} = 2.0.

We need to check if continuity correction is needed. With continuity correction: P(X4920)P(Z4920.5480060)=P(Z2.0083)P(X \le 4920) \approx P(Z \le \frac{4920.5 - 4800}{60}) = P(Z \le 2.0083). Without continuity correction: P(Z2.0)P(Z \le 2.0). Looking at the provided table: z=2.0    P(0Z2.0)=0.477z=2.0 \implies P(0 \le Z \le 2.0) = 0.477. The table gives P(0Zz)P(0 \le Z \le z). We want P(Z2.0)=P(Z0)+P(0Z2.0)=0.5+0.477=0.977P(Z \le 2.0) = P(Z \le 0) + P(0 \le Z \le 2.0) = 0.5 + 0.477 = 0.977.

If I used continuity correction, z2.01z \approx 2.01, which is not in the table. The table has steps of 0.5. This strongly suggests we should use the integer value directly resulting in a clean Z-score found in the table. So z=2.0z = 2.0. k=0.977k = 0.977. We need 1000×k1000 \times k. 1000×0.977=9771000 \times 0.977 = 977.

Let me double check the calculations in Python to be absolutely sure. [/THOUGHT] [PYTHON] import math

n = 19200 a = 4 p = 0.25 mu = n * p sigma = math.sqrt(n * p * (1 - p))

target_X = 4800 + 30 * a z_score = (target_X - mu) / sigma

print(f"{mu=}") print(f"{sigma=}") print(f"{target_X=}") print(f"{z_score=}") [/PYTHON] [THOUGHT] The Python output confirms: μ=4800.0\mu = 4800.0 σ=60.0\sigma = 60.0 Target X=4920X = 4920 z=4920480060=2.0z = \frac{4920 - 4800}{60} = 2.0

The table provided is: z=2.0P(0Z2.0)=0.477z=2.0 \rightarrow P(0 \le Z \le 2.0) = 0.477 We want P(X4920)P(Z2.0)P(X \le 4920) \approx P(Z \le 2.0). Since the normal distribution is symmetric, P(Z0)=0.5P(Z \le 0) = 0.5. So P(Z2.0)=0.5+0.477=0.977P(Z \le 2.0) = 0.5 + 0.477 = 0.977. k=0.977k = 0.977. The question asks for 1000×k1000 \times k. 1000×0.977=9771000 \times 0.977 = 977.

Is there any ambiguity? "Let XX be the number of times the recorded value is 3." -> Binomial variable. "Compute P(X4800+30a)P(X \le 4800 + 30a)". "Using the standard normal table". The table has specific values. z=2.0z=2.0 is exactly there. If I used continuity correction, z=120.5/60=2.00833z = 120.5 / 60 = 2.00833. The table doesn't support 2.008. It supports 2.0. So the intended solution is without continuity correction or the problem is designed such that the difference is negligible for the "lookup" nature of the task. Given the discrete table steps, exact z=2.0z=2.0 is the intended path.

Final check of the question text: "Compute 1000×k1000 \times k." kk is the probability. Result is 977.

Let's re-read to ensure no misinterpretation of "recorded value".

  • Roll die.
  • If a\le a: toss 5 times. Record heads.
  • If >a> a: toss 3 times. Record heads.
  • XX is count of experiments where recorded value is 3. This matches my derivation of pp.

Let's re-verify the calculation of pp for a=4a=4. P(D4)=4/6=2/3P(D \le 4) = 4/6 = 2/3. P(D>4)=2/6=1/3P(D > 4) = 2/6 = 1/3. If D4D \le 4, toss 5 coins. P(3H)=(53)(1/2)5=10/32=5/16P(3H) = \binom{5}{3} (1/2)^5 = 10/32 = 5/16. If D>4D > 4, toss 3 coins. P(3H)=(33)(1/2)3=1/8P(3H) = \binom{3}{3} (1/2)^3 = 1/8. p=(2/3)(5/16)+(1/3)(1/8)=10/48+1/24=5/24+1/24=6/24=1/4p = (2/3)(5/16) + (1/3)(1/8) = 10/48 + 1/24 = 5/24 + 1/24 = 6/24 = 1/4. Correct.

E(X)=19200×(1/4)=4800E(X) = 19200 \times (1/4) = 4800. Matches given E(X)E(X). So a=4a=4 is correct.

Target X4800+30(4)=4920X \le 4800 + 30(4) = 4920. Z=(49204800)/19200×0.25×0.75Z = (4920 - 4800) / \sqrt{19200 \times 0.25 \times 0.75}. σ=4800×0.75=3600=60\sigma = \sqrt{4800 \times 0.75} = \sqrt{3600} = 60. Z=120/60=2Z = 120 / 60 = 2.

Table value for Z=2.0Z=2.0 is 0.4770.477 (for 0Zz0 \le Z \le z). Total probability P(Z2.0)=0.5+0.477=0.977P(Z \le 2.0) = 0.5 + 0.477 = 0.977. 1000k=9771000 k = 977.

The solution seems robust.

One minor detail: "natural number a6a \le 6". If aa was different, say a=1a=1. p=(1/6)(5/16)+(5/6)(1/8)=5/96+5/48=15/96=5/320.156p = (1/6)(5/16) + (5/6)(1/8) = 5/96 + 5/48 = 15/96 = 5/32 \approx 0.156. E(X)=19200×5/32=600×5=30004800E(X) = 19200 \times 5/32 = 600 \times 5 = 3000 \ne 4800. So a=4a=4 is unique.

The steps are clear.

  1. Formulate pp in terms of aa.
  2. Equate npnp to 4800 to find aa.
  3. Calculate μ\mu and σ\sigma.
  4. Calculate zz-score for the bound.
  5. Look up probability in the table.
  6. Multiply by 1000.

The value kk is the probability. k=0.977k = 0.977. 1000k=9771000k = 977.

I will output the final answer. [/THOUGHT] [THOUGHT] The problem asks for 1000×k1000 \times k where k=P(X4800+30a)k = P(X \le 4800 + 30a). From the Python code, a=4a=4, μ=4800\mu=4800, σ=60\sigma=60. The bound is 4800+30(4)=49204800 + 30(4) = 4920. The Z-score is (49204800)/60=2.0(4920 - 4800) / 60 = 2.0. From the table, P(0Z2.0)=0.477P(0 \le Z \le 2.0) = 0.477. Thus, P(Z2.0)=0.5+0.477=0.977P(Z \le 2.0) = 0.5 + 0.477 = 0.977. k=0.977k = 0.977. 1000×k=9771000 \times k = 977. [/THOUGHT]

\boxed{977}

Tool Output
[PYTHON OUTPUT] sol_a=[4.00000000000000] [/PYTHON OUTPUT] [PYTHON OUTPUT] mu=4800.0 sigma=60.0 target_X=4920 z_score=2.0 [/PYTHON OUTPUT]
Reasoning Process

The random variable XX represents the number of times the recorded value is 3 in n=19200n=19200 trials. Let pp be the probability of recording a 3 in a single trial. The experiment involves rolling a die (outcome DD) and then tossing a coin.

  • If DaD \leq a, toss 5 times. Probability of 3 heads is (53)(0.5)5=1032=516\binom{5}{3}(0.5)^5 = \frac{10}{32} = \frac{5}{16}.
  • If D>aD > a, toss 3 times. Probability of 3 heads is (33)(0.5)3=18\binom{3}{3}(0.5)^3 = \frac{1}{8}. The probability of rolling DaD \leq a is a/6a/6, and D>aD > a is (6a)/6(6-a)/6. Thus, p=a6516+6a618p = \frac{a}{6} \cdot \frac{5}{16} + \frac{6-a}{6} \cdot \frac{1}{8}.

Given E(X)=4800E(X) = 4800 and E(X)=np=19200pE(X) = np = 19200p, we have: 19200p=4800    p=480019200=1419200p = 4800 \implies p = \frac{4800}{19200} = \frac{1}{4}.

We solve for aa: a6516+6a618=14\frac{a}{6} \cdot \frac{5}{16} + \frac{6-a}{6} \cdot \frac{1}{8} = \frac{1}{4} Multiply by 48 to clear denominators: 8a516+8(6a)18=128a \cdot \frac{5}{16} + 8(6-a) \cdot \frac{1}{8} = 12 5a2+(6a)=12\frac{5a}{2} + (6-a) = 12 2.5a+6a=122.5a + 6 - a = 12 1.5a=61.5a = 6 a=4a = 4.

We need to compute k=P(X4800+30a)k = P(X \leq 4800 + 30a). Substitute a=4a=4: k=P(X4800+120)=P(X4920)k = P(X \leq 4800 + 120) = P(X \leq 4920).

We approximate XX using a normal distribution N(μ,σ2)N(\mu, \sigma^2). μ=4800\mu = 4800. σ=np(1p)=4800(10.25)=48000.75=3600=60\sigma = \sqrt{np(1-p)} = \sqrt{4800(1 - 0.25)} = \sqrt{4800 \cdot 0.75} = \sqrt{3600} = 60.

Standardize the value X=4920X = 4920: z=4920480060=12060=2.0z = \frac{4920 - 4800}{60} = \frac{120}{60} = 2.0.

Using the provided table for z=2.0z=2.0: P(0Z2.0)=0.477P(0 \leq Z \leq 2.0) = 0.477. Since we want P(Z2.0)P(Z \leq 2.0), we add the probability of the lower half: P(Z2.0)=0.5+0.477=0.977P(Z \leq 2.0) = 0.5 + 0.477 = 0.977.

Thus, k=0.977k = 0.977. The value to compute is 1000×k=9771000 \times k = 977.

\boxed{977}

Final Model Output
977

Comparative Analysis (P38) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
69.5
Solar-Pro-2 (31B)(high)
64.7
Gemini-3-Pro-Preview
57.4
Deepseek-V3.2
51.2
Grok-4.1-fast
32.0
HCX-007(high)
30.4
A.X-4.0 (72B)
28.0
GPT-5.1 (high)
25.8
Claude-Opus-4.5
21.1
EXAONE-4.0.1-32B (high)
7.3

Avg Token Usage

Solar-Pro-2 (31B)(high)
10399.0
Gemini-3-Pro-Preview
10165.0
Grok-4.1-fast
6540.0
Claude-Opus-4.5
5947.0
Deepseek-V3.2
5195.0
HCX-007(high)
5075.0
EXAONE-4.0.1-32B (high)
4934.0
GPT-5.1 (high)
3762.0
Llama-VARCO-8B-Instruct
3117.0
A.X-4.0 (72B)
2613.0