Problem Analysis #4

235.95s
12,183 toks
Problem Statement

Consider a function f(t)f(t) of a real variable tt, where f(t)|f(t)| and f(t)2|f(t)|^2 are integrable. Let F(ω)=F[f(t)]F(\omega) = \mathcal{F}[f(t)] denote the Fourier transform of f(t)f(t):F(ω)=F[f(t)]=f(t)eiωtdt,F(\omega) = \mathcal{F}[f(t)]= \int_{-\infty}^{\infty} f(t)\,e^{-i\omega t}\,dt,where ω\omega is a real number and ii is the imaginary unit. Assume the following identity holds:F(ω)2dω=2πf(t)2dt.\int_{-\infty}^{\infty} |F(\omega)|^2\,d\omega= 2\pi \int_{-\infty}^{\infty} |f(t)|^2\,dt.Let Rf(τ)R_f(\tau) denote the autocorrelation function of f(t)f(t):Rf(τ)=f(t)f(tτ)dt,R_f(\tau) = \int_{-\infty}^{\infty} f(t)\,f(t-\tau)\,dt,where τ\tau is a real number.\subsection*{I.}Consider the case where f(t)f(t) is defined byf(t)={cos(at)(tπ2a),0(t>π2a),f(t) =\begin{cases}\cos(at) & (|t| \le \dfrac{\pi}{2a}),\\[1mm]0 & (|t| > \dfrac{\pi}{2a}),\end{cases}where aa is a positive real constant. Find the following:

  • [(1)] The Fourier transform F(ω)F(\omega).

  • [(2)] The autocorrelation function Rf(τ)R_f(\tau).

  • [(3)] The Fourier transform F[Rf(τ)]\mathcal{F}[R_f(\tau)]. \subsection*{II.}Using the results of I, evaluate the following integrals:

  • [(1)] cos2 ⁣(πx2)(x21)2dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^2\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^2}\,dx,

  • [(2)] cos4 ⁣(πx2)(x21)4dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^4\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^4}\,dx. Let AA denote the value obtained in {\rm II(1)}, and let BB denote the value obtained in {\rm II(2)}. In addition, for the case a=1a=1 in I, let F(0)F(0) be the value of the Fourier transform in {\rm I(1)} at ω=0\omega=0.DefineK=37(F(0))4+999(96B16A230A)+123456.\mathcal{K}= 37\bigl(F(0)\bigr)^4+ 999\bigl(96B - 16A^2 - 30A\bigr)+ 123456.Compute the integer K\mathcal{K}.\

Ground Truth
124048
Execution Trace
Reasoning Process

The problem asks us to compute a value K\mathcal{K} based on the Fourier transform and autocorrelation of a function f(t)f(t).

Part I: Analytical Derivations

  1. Fourier Transform F(ω)F(\omega): For f(t)=cos(at)f(t) = \cos(at) within tπ2a|t| \le \frac{\pi}{2a} and 0 otherwise: F(ω)=π2aπ2acos(at)eiωtdtF(\omega) = \int_{-\frac{\pi}{2a}}^{\frac{\pi}{2a}} \cos(at) e^{-i\omega t} \, dt Using Python, we will verify the result is F(ω)=2acos(πω2a)a2ω2F(\omega) = \frac{2a \cos(\frac{\pi \omega}{2a})}{a^2 - \omega^2}.

  2. Autocorrelation Rf(τ)R_f(\tau): Rf(τ)=f(t)f(tτ)dtR_f(\tau) = \int_{-\infty}^{\infty} f(t)f(t-\tau) \, dt We will compute this integral for a=1a=1 specifically, as required for Part II.

  3. Fourier Transform of Autocorrelation: By the Wiener-Khinchin theorem (and the definition given), F[Rf(τ)]=F(ω)2\mathcal{F}[R_f(\tau)] = |F(\omega)|^2.

Part II: Evaluation of Integrals

We need to compute AA and BB for the case a=1a=1. A=cos2(πx2)(x21)2dxA = \int_{-\infty}^{\infty} \frac{\cos^2(\frac{\pi x}{2})}{(x^2-1)^2} \, dx B=cos4(πx2)(x21)4dxB = \int_{-\infty}^{\infty} \frac{\cos^4(\frac{\pi x}{2})}{(x^2-1)^4} \, dx

Using the relation derived in the thought process: For a=1a=1, F(ω)=2cos(πω2)1ω2F(\omega) = \frac{2 \cos(\frac{\pi \omega}{2})}{1 - \omega^2}. Thus, the integrand for AA is 14(F(x))2\frac{1}{4} (F(x))^2. A=14(F(ω))2dωA = \frac{1}{4} \int_{-\infty}^{\infty} (F(\omega))^2 \, d\omega Using Parseval's identity F(ω)2dω=2πf(t)2dt\int |F(\omega)|^2 d\omega = 2\pi \int |f(t)|^2 dt: A=14(2πf(t)2dt)=π2π/2π/2cos2(t)dtA = \frac{1}{4} \left( 2\pi \int_{-\infty}^{\infty} |f(t)|^2 \, dt \right) = \frac{\pi}{2} \int_{-\pi/2}^{\pi/2} \cos^2(t) \, dt

Similarly, the integrand for BB is 116(F(x))4\frac{1}{16} (F(x))^4. B=116(F(ω))4dωB = \frac{1}{16} \int_{-\infty}^{\infty} (F(\omega))^4 \, d\omega Using Parseval's identity on Rf(τ)R_f(\tau), where F[Rf(τ)]=F(ω)2\mathcal{F}[R_f(\tau)] = F(\omega)^2: (F(ω)2)2dω=2π(Rf(τ))2dτ\int_{-\infty}^{\infty} (F(\omega)^2)^2 \, d\omega = 2\pi \int_{-\infty}^{\infty} (R_f(\tau))^2 \, d\tau B=116(2π(Rf(τ))2dτ)=π8(Rf(τ))2dτB = \frac{1}{16} \left( 2\pi \int_{-\infty}^{\infty} (R_f(\tau))^2 \, d\tau \right) = \frac{\pi}{8} \int_{-\infty}^{\infty} (R_f(\tau))^2 \, d\tau

We will use Python to compute these definite integrals.

[PYTHON] from sympy import symbols, cos, integrate, pi, oo, simplify

Define variables

t, tau, w, x = symbols('t tau w x', real=True) a = symbols('a', positive=True)

Part I: Fourier Transform F(w)

f(t) = cos(at) for |t| <= pi/(2a)

f_t = cos(at) limit = pi / (2a) F_w = integrate(f_t * cos(w*t), (t, -limit, limit)) print(f"F(w) generic: {simplify(F_w)}")

Check F(0) for a=1

F_0 = integrate(cos(t), (t, -pi/2, pi/2)) print(f"F(0) for a=1: {F_0}")

Part II: Calculate A

A = (pi/2) * integral(f(t)^2) for a=1

f(t) = cos(t) for |t| <= pi/2

integral_f_sq = integrate(cos(t)**2, (t, -pi/2, pi/2)) A = (pi/2) * integral_f_sq print(f"Integral of f(t)^2: {integral_f_sq}") print(f"Value of A: {A}")

Part II: Calculate B

First calculate R_f(tau) for a=1

R_f(tau) is even, support is [-pi, pi]

For tau >= 0, integral is from -pi/2 + tau to pi/2

Intersection length is pi - tau. If tau > pi, 0.

Let's define R_f_pos for 0 <= tau <= pi

R_f_pos = integrate(cos(t) * cos(t - tau), (t, -pi/2 + tau, pi/2)) print(f"R_f(tau) for tau>0: {simplify(R_f_pos)}")

B = (pi/8) * integral(R_f(tau)^2) over (-oo, oo)

Since R_f is even and 0 outside [-pi, pi]:

Integral = 2 * integral(R_f(tau)^2, (tau, 0, pi))

integral_Rf_sq = 2 * integrate(R_f_pos**2, (tau, 0, pi)) B = (pi/8) * integral_Rf_sq print(f"Integral of R_f(tau)^2: {integral_Rf_sq}") print(f"Value of B: {B}")

Calculate K

K = 37*(F(0))^4 + 999*(96B - 16A^2 - 30*A) + 123456

K = 37*(F_0)4 + 999(96B - 16A**2 - 30A) + 123456 print(f"Value of K: {K}") print(f"Value of K simplified: {simplify(K)}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] F(w) generic: Piecewise((sin(pi*w/a)/(2*w) + pi/(2*a), Eq(a, w) | Eq(a, -w)), (2*a*cos(pi*w/(2*a))/(a**2 - w**2), True)) F(0) for a=1: 2 Integral of f(t)^2: pi/2 Value of A: pi**2/4 R_f(tau) for tau>0: -tau*cos(tau)/2 + sin(tau)/2 + pi*cos(tau)/2 Integral of R_f(tau)^2: 5*pi/8 + pi**3/12 Value of B: pi*(5*pi/8 + pi**3/12)/8 Value of K: -999*pi**4 - 14985*pi**2/2 + 124048 + 11988*pi*(5*pi/8 + pi**3/12) Value of K simplified: 124048 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python code successfully computed the values for F(0)F(0), AA, and BB (implicitly via the integral of Rf2R_f^2). From the output:

  1. F(0)=2F(0) = 2.
  2. A=π24A = \frac{\pi^2}{4}.
  3. The integral of Rf(τ)2R_f(\tau)^2 over (,)(-\infty, \infty) is 5π8+π312\frac{5\pi}{8} + \frac{\pi^3}{12}. Using the relation derived, B=π8Rf(τ)2dτ=π8(5π8+π312)=5π264+π496B = \frac{\pi}{8} \int_{-\infty}^{\infty} R_f(\tau)^2 \, d\tau = \frac{\pi}{8} \left( \frac{5\pi}{8} + \frac{\pi^3}{12} \right) = \frac{5\pi^2}{64} + \frac{\pi^4}{96}.

We need to compute K=37(F(0))4+999(96B16A230A)+123456\mathcal{K} = 37(F(0))^4 + 999(96B - 16A^2 - 30A) + 123456.

Calculate the term in the parenthesis: 96B=96(5π264+π496)=96×5π264+π4=3×5π22+π4=15π22+π496B = 96 \left( \frac{5\pi^2}{64} + \frac{\pi^4}{96} \right) = \frac{96 \times 5\pi^2}{64} + \pi^4 = \frac{3 \times 5\pi^2}{2} + \pi^4 = \frac{15\pi^2}{2} + \pi^4. 16A2=16(π24)2=16(π416)=π416A^2 = 16 \left( \frac{\pi^2}{4} \right)^2 = 16 \left( \frac{\pi^4}{16} \right) = \pi^4. 30A=30(π24)=30π24=15π2230A = 30 \left( \frac{\pi^2}{4} \right) = \frac{30\pi^2}{4} = \frac{15\pi^2}{2}.

Substitute these back: 96B16A230A=(15π22+π4)π415π22=096B - 16A^2 - 30A = \left( \frac{15\pi^2}{2} + \pi^4 \right) - \pi^4 - \frac{15\pi^2}{2} = 0.

The middle term vanishes. K=37(2)4+0+123456\mathcal{K} = 37(2)^4 + 0 + 123456 K=37(16)+123456\mathcal{K} = 37(16) + 123456 K=592+123456\mathcal{K} = 592 + 123456 K=124048\mathcal{K} = 124048. [/THOUGHT]

\boxed{124048}

Final Model Output
124048

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
414.5
Gemini-3-Pro-Preview
235.9
Deepseek-V3.2
172.0
Solar-Pro-2 (31B)(high)
168.4
Llama-VARCO-8B-Instruct
128.4
A.X-4.0 (72B)
124.6
Grok-4.1-fast
63.1
Claude-Opus-4.5
52.5
HCX-007(high)
32.4
EXAONE-4.0.1-32B (high)
9.1

Avg Token Usage

Solar-Pro-2 (31B)(high)
22565.0
GPT-5.1 (high)
18561.0
Deepseek-V3.2
17612.0
Grok-4.1-fast
13781.0
Gemini-3-Pro-Preview
12183.0
Claude-Opus-4.5
9408.0
A.X-4.0 (72B)
9126.0
Llama-VARCO-8B-Instruct
8388.0
EXAONE-4.0.1-32B (high)
5657.0
HCX-007(high)
5162.0