Problem Analysis #40

184.89s
5,568 toks
Problem Statement

Consider the solid whose base in the xyxy-plane is the region bounded by the curvey=x+xlnx,y = \sqrt{x + x \ln x},the xx-axis, and the vertical lines x=1x = 1 and x=2x = 2. The cross-sections of this solid taken by planes perpendicular to the xx-axis are all equilateral triangles. Find the volume of this solid. [3 points]If the volume is 3(p+qln2)r\frac{\sqrt{3}(p + q\ln 2)}{r}, compute p+q+rp+q+r.\

Ground Truth
27
Execution Trace
Reasoning Process

Steps for Python code:

  1. Define symbol x.
  2. Define the function A(x)=34(x+xlnx)A(x) = \frac{\sqrt{3}}{4} (x + x \ln x).
  3. Integrate A(x)A(x) from 1 to 2.
  4. Extract p, q, r from the result.
  5. Calculate sum.

Let's write the code. [PYTHON] from sympy import symbols, integrate, ln, sqrt, simplify

x = symbols('x')

Side length s(x) = sqrt(x + x*ln(x))

Area A(x) = (sqrt(3)/4) * s(x)^2 = (sqrt(3)/4) * (x + x*ln(x))

We factor out sqrt(3)/4 for the integration part to keep it simple first

integrand = x + x * ln(x) integral_result = integrate(integrand, (x, 1, 2))

print(f"Integral result: {integral_result}")

Now multiply by sqrt(3)/4

volume = (sqrt(3)/4) * integral_result print(f"Volume: {volume}")

We need the form sqrt(3)(p + qln(2))/r

Let's simplify the integral result to see p, q, r

Integral result should be of form (A + B*ln(2))/C

Then Volume = sqrt(3)/4 * (A + Bln(2))/C = sqrt(3)(A + B*ln(2))/(4C)

So p=A, q=B, r=4C (assuming fractions are simplified)

Let's check the value of integral_result

It was 3/4 + 2*ln(2) based on manual calc.

Let's see what sympy gives.

[/PYTHON] ps_output: Integral result: 2log(2) + 3/4 Volume: sqrt(3)(2*log(2) + 3/4)/4

Tool Output
[PYTHON OUTPUT] Integral result: 3/4 + 2*log(2) Volume: sqrt(3)*(3/4 + 2*log(2))/4 [/PYTHON OUTPUT]
Reasoning Process

The volume of the solid is given by the integral of the cross-sectional area A(x)A(x) from x=1x=1 to x=2x=2. The side length of the equilateral triangle at position xx is s(x)=y=x+xlnxs(x) = y = \sqrt{x + x \ln x}. The area of an equilateral triangle with side ss is A(x)=34s(x)2=34(x+xlnx)A(x) = \frac{\sqrt{3}}{4} s(x)^2 = \frac{\sqrt{3}}{4} (x + x \ln x).

The volume is: [ V = \int_{1}^{2} \frac{\sqrt{3}}{4} (x + x \ln x) , dx = \frac{\sqrt{3}}{4} \int_{1}^{2} (x + x \ln x) , dx ]

From the Python output, the integral 12(x+xlnx)dx\int_{1}^{2} (x + x \ln x) \, dx evaluates to 34+2ln2\frac{3}{4} + 2 \ln 2. Substituting this back into the volume expression: [ V = \frac{\sqrt{3}}{4} \left( \frac{3}{4} + 2 \ln 2 \right) = \frac{\sqrt{3}}{4} \left( \frac{3 + 8 \ln 2}{4} \right) = \frac{\sqrt{3}(3 + 8 \ln 2)}{16} ]

Comparing this to the form 3(p+qln2)r\frac{\sqrt{3}(p + q\ln 2)}{r}, we have: p=3p = 3 q=8q = 8 r=16r = 16

We need to find p+q+rp + q + r: [ p + q + r = 3 + 8 + 16 = 27 ]

\boxed{27}

Final Model Output
27

Comparative Analysis (P40) (Average across runs)

Avg Time Taken

Gemini-3-Pro-Preview
184.9
Llama-VARCO-8B-Instruct
46.8
Solar-Pro-2 (31B)(high)
33.8
HCX-007(high)
33.3
Deepseek-V3.2
25.5
A.X-4.0 (72B)
24.1
Claude-Opus-4.5
21.5
Grok-4.1-fast
19.4
GPT-5.1 (high)
15.9
EXAONE-4.0.1-32B (high)
3.0

Avg Token Usage

Solar-Pro-2 (31B)(high)
6246.0
Gemini-3-Pro-Preview
5568.0
Claude-Opus-4.5
5101.0
Grok-4.1-fast
4946.0
HCX-007(high)
4786.0
Llama-VARCO-8B-Instruct
4676.0
Deepseek-V3.2
4363.0
GPT-5.1 (high)
3043.0
EXAONE-4.0.1-32B (high)
2876.0
A.X-4.0 (72B)
2231.0