Problem Analysis #42

69.96s
13,341 toks
Problem Statement

Consider the functionf(x)=12x2x+ln(1+x),f(x) = \frac{1}{2}x^2 - x + \ln(1 + x),and let tt be a positive real number. For s>0s > 0, let (s,f(s))(s, f(s)) be a point on the curve y=f(x)y = f(x). Let g(t)g(t) denote the value of ss such that the distance between the foot of the perpendicular from (s,f(s))(s, f(s)) to the yy-axis and the point where the tangent to the curve at (s,f(s))(s, f(s)) meets the yy-axis is equal to tt. Evaluate12274g(t)dt.\int_{\frac{1}{2}}^{\frac{27}{4}} g(t) \, dt.[4 points]\subsection*{Numerical answer}If the value is pq+ln2\frac{p}{q} + \ln 2, compute p+qp+q.\

Ground Truth
169
Execution Trace
Reasoning Process

[THOUGHT] The problem asks to evaluate the integral 1/227/4g(t)dt\int_{1/2}^{27/4} g(t) \, dt, where g(t)g(t) is the inverse function of t(s)=s31+st(s) = \frac{s^3}{1+s}. Let s=g(t)s = g(t), so t=s31+st = \frac{s^3}{1+s}. The integral becomes s1s2sdtdsds\int_{s_1}^{s_2} s \frac{dt}{ds} \, ds. First, I need to find the limits of integration s1s_1 and s2s_2 corresponding to t=1/2t = 1/2 and t=27/4t = 27/4. Then I will compute the derivative dtds\frac{dt}{ds} and the integral.

Steps:

  1. Solve s31+s=12\frac{s^3}{1+s} = \frac{1}{2} for s>0s > 0 to find s1s_1.
  2. Solve s31+s=274\frac{s^3}{1+s} = \frac{27}{4} for s>0s > 0 to find s2s_2.
  3. Define the integrand sdds(s31+s)s \cdot \frac{d}{ds}\left(\frac{s^3}{1+s}\right).
  4. Compute the definite integral using SymPy.
  5. Format the result as pq+ln2\frac{p}{q} + \ln 2 and find p+qp+q. [/THOUGHT] [PYTHON] from sympy import symbols, solve, diff, integrate, ln, simplify, Rational

s = symbols('s', real=True, positive=True)

Define t as a function of s

t_expr = s**3 / (1 + s)

Find s1 for t = 1/2

s^3 / (1+s) = 1/2 => 2s^3 - s - 1 = 0

s1_solutions = solve(2*s**3 - s - 1, s) print(f"s1 solutions: {s1_solutions}")

Find s2 for t = 27/4

s^3 / (1+s) = 27/4 => 4s^3 - 27s - 27 = 0

s2_solutions = solve(4s**3 - 27s - 27, s) print(f"s2 solutions: {s2_solutions}")

Calculate dt/ds

dt_ds = diff(t_expr, s) print(f"dt/ds: {dt_ds}")

Integrand is s * dt/ds

integrand = s * dt_ds print(f"Integrand: {integrand}")

We need to pick the correct real positive roots

Let's filter them in the next step or manually inspect output

[/PYTHON] [THOUGHT] The previous code will output the solutions. I need to identify the positive real roots s1s_1 and s2s_2. Then I will perform the integration.

Let's anticipate the roots: For 2s3s1=02s^3 - s - 1 = 0: s=1s=1 works (211=02-1-1=0). So s1=1s_1 = 1. For 4s327s27=04s^3 - 27s - 27 = 0: Let's test small integers or fractions. s=3s=3: 4(27)27(3)27=1088127=04(27) - 27(3) - 27 = 108 - 81 - 27 = 0. So s2=3s_2 = 3.

So the limits are s1=1s_1 = 1 and s2=3s_2 = 3. I will verify this in the code and then compute the integral 13sdds(s31+s)ds\int_{1}^{3} s \frac{d}{ds}\left(\frac{s^3}{1+s}\right) ds. The integral expression is 13s2(2s+3)(1+s)2ds\int_{1}^{3} \frac{s^2(2s+3)}{(1+s)^2} ds. I will use SymPy to compute this exact value. [/THOUGHT] [PYTHON] from sympy import symbols, integrate, simplify, ln

s = symbols('s', real=True, positive=True) t_expr = s**3 / (1 + s) dt_ds = t_expr.diff(s) integrand = s * dt_ds

Limits

s1 = 1 s2 = 3

Compute integral

result = integrate(integrand, (s, s1, s2)) print(f"Result: {result}") print(f"Simplified Result: {simplify(result)}") [/PYTHON] [THOUGHT] The output of the previous code will give me the value of the integral. Let's assume the result is something like A + ln(2). I need to match it to pq+ln2\frac{p}{q} + \ln 2. Then compute p+qp+q.

Let's double check the manual integration plan to be sure. Integrand: s3s2(1+s)s3(1+s)2=s(3s2+3s3s3)(1+s)2=2s4+3s3(1+s)2s \cdot \frac{3s^2(1+s) - s^3}{(1+s)^2} = \frac{s(3s^2 + 3s^3 - s^3)}{(1+s)^2} = \frac{2s^4 + 3s^3}{(1+s)^2}. Wait, my previous manual derivative was 2s3+3s2(1+s)2\frac{2s^3+3s^2}{(1+s)^2}. Let's recompute dtds\frac{dt}{ds}. t=s31+st = \frac{s^3}{1+s}. t=3s2(1+s)s3(1)(1+s)2=3s2+3s3s3(1+s)2=2s3+3s2(1+s)2t' = \frac{3s^2(1+s) - s^3(1)}{(1+s)^2} = \frac{3s^2 + 3s^3 - s^3}{(1+s)^2} = \frac{2s^3 + 3s^2}{(1+s)^2}. Correct. Then multiply by ss (since we are integrating sdt=sdtdsdss \, dt = s \frac{dt}{ds} ds). So integrand is s2s3+3s2(1+s)2=2s4+3s3(1+s)2s \cdot \frac{2s^3 + 3s^2}{(1+s)^2} = \frac{2s^4 + 3s^3}{(1+s)^2}.

Polynomial division: Numerator: 2s4+3s32s^4 + 3s^3. Denominator: s2+2s+1s^2 + 2s + 1. 2s4+3s3=2s2(s2+2s+1)4s32s2+3s3=2s2(s+1)2s32s22s^4 + 3s^3 = 2s^2(s^2 + 2s + 1) - 4s^3 - 2s^2 + 3s^3 = 2s^2(s+1)^2 - s^3 - 2s^2. This seems tedious. Let u=1+su = 1+s, so s=u1s = u-1. Integrand = 2(u1)4+3(u1)3u2\frac{2(u-1)^4 + 3(u-1)^3}{u^2}. =(u1)3[2(u1)+3]u2=(u1)3(2u+1)u2= \frac{(u-1)^3 [2(u-1) + 3]}{u^2} = \frac{(u-1)^3 (2u + 1)}{u^2}. Expand numerator: (u33u2+3u1)(2u+1)(u^3 - 3u^2 + 3u - 1)(2u + 1) =2u4+u36u33u2+6u2+3u2u1= 2u^4 + u^3 - 6u^3 - 3u^2 + 6u^2 + 3u - 2u - 1 =2u45u3+3u2+u1= 2u^4 - 5u^3 + 3u^2 + u - 1. Divide by u2u^2: 2u25u+3+1u1u22u^2 - 5u + 3 + \frac{1}{u} - \frac{1}{u^2}. Integrate term by term with respect to uu. Limits for ss: 1 to 3. Limits for uu: 2 to 4. 24(2u25u+3+u1u2)du\int_2^4 (2u^2 - 5u + 3 + u^{-1} - u^{-2}) du =[23u352u2+3u+lnu+u1]24= [\frac{2}{3}u^3 - \frac{5}{2}u^2 + 3u + \ln|u| + u^{-1}]_2^4.

Evaluate at 4: 23(64)52(16)+3(4)+ln4+14\frac{2}{3}(64) - \frac{5}{2}(16) + 3(4) + \ln 4 + \frac{1}{4} =128340+12+2ln2+0.25= \frac{128}{3} - 40 + 12 + 2\ln 2 + 0.25 =42.66...28+...= 42.66... - 28 + ... =128328+0.25+2ln2= \frac{128}{3} - 28 + 0.25 + 2\ln 2 =128843+14+2ln2= \frac{128 - 84}{3} + \frac{1}{4} + 2\ln 2 =443+14+2ln2= \frac{44}{3} + \frac{1}{4} + 2\ln 2 =176+312+2ln2=17912+2ln2= \frac{176 + 3}{12} + 2\ln 2 = \frac{179}{12} + 2\ln 2.

Evaluate at 2: 23(8)52(4)+3(2)+ln2+12\frac{2}{3}(8) - \frac{5}{2}(4) + 3(2) + \ln 2 + \frac{1}{2} =16310+6+ln2+0.5= \frac{16}{3} - 10 + 6 + \ln 2 + 0.5 =1634+0.5+ln2= \frac{16}{3} - 4 + 0.5 + \ln 2 =16123+12+ln2= \frac{16 - 12}{3} + \frac{1}{2} + \ln 2 =43+12+ln2= \frac{4}{3} + \frac{1}{2} + \ln 2 =8+36+ln2=116+ln2= \frac{8+3}{6} + \ln 2 = \frac{11}{6} + \ln 2.

Difference: (17912+2ln2)(116+ln2)(\frac{179}{12} + 2\ln 2) - (\frac{11}{6} + \ln 2) =179122212+ln2= \frac{179}{12} - \frac{22}{12} + \ln 2 =15712+ln2= \frac{157}{12} + \ln 2.

So p=157,q=12p = 157, q = 12. p+q=169p+q = 169.

Let's verify this with the Python code. [/THOUGHT] [PYTHON] from sympy import symbols, integrate, simplify, ln, Rational

s = symbols('s', real=True, positive=True)

Integrand derived: (2s^4 + 3s^3) / (1+s)^2

integrand = (2s**4 + 3s**3) / (1 + s)**2

Limits

s1 = 1 s2 = 3

Compute integral

result = integrate(integrand, (s, s1, s2)) print(f"Result: {result}")

Check if result matches 157/12 + ln(2)

expected = Rational(157, 12) + ln(2) print(f"Expected: {expected}") print(f"Difference: {simplify(result - expected)}") [/PYTHON] [THOUGHT] The code will confirm the result. Result should be 157/12 + log(2). The question asks for p+qp+q where the value is pq+ln2\frac{p}{q} + \ln 2. p=157p = 157, q=12q = 12. p+q=157+12=169p+q = 157 + 12 = 169.

Wait, I should double check if the fraction can be simplified. 157 is not divisible by 2 (odd). Sum of digits 1+5+7 = 13, not divisible by 3. 157 ends in 7, not 5. 157 / 7 = 22.4... 157 / 11 = 14.2... 157 / 13 = 12.07... Square root of 157 is approx 12.5. Primes to check: 2, 3, 5, 7, 11. None work. So 157 is likely prime. Thus the fraction is in simplest form.

The problem statement says "If the value is pq+ln2\frac{p}{q} + \ln 2". It does not explicitly say "in simplest form", but usually that is implied or p,qp, q are coprime integers. Given the specific form, I will assume p=157,q=12p=157, q=12.

Let's double check the question wording carefully. "If the value is pq+ln2\frac{p}{q} + \ln 2, compute p+qp+q." This implies the coefficient of ln2\ln 2 is exactly 1. My manual calculation gave ln2\ln 2 (from 2ln2ln22\ln 2 - \ln 2). So the form matches.

Let's verify the integration steps again. u=s+1u = s+1. Integrand in uu: 2u25u+3+u1u22u^2 - 5u + 3 + u^{-1} - u^{-2}. Integral: 23u352u2+3u+lnu+u1\frac{2}{3}u^3 - \frac{5}{2}u^2 + 3u + \ln u + u^{-1}. Upper limit u=4u=4: 2/3(64)5/2(16)+12+ln4+1/42/3(64) - 5/2(16) + 12 + \ln 4 + 1/4 =128/340+12+2ln2+1/4= 128/3 - 40 + 12 + 2\ln 2 + 1/4 =128/328+1/4+2ln2= 128/3 - 28 + 1/4 + 2\ln 2 =(512336+3)/12+2ln2= (512 - 336 + 3)/12 + 2\ln 2 =179/12+2ln2= 179/12 + 2\ln 2. Correct.

Lower limit u=2u=2: 2/3(8)5/2(4)+6+ln2+1/22/3(8) - 5/2(4) + 6 + \ln 2 + 1/2 =16/310+6+ln2+1/2= 16/3 - 10 + 6 + \ln 2 + 1/2 =16/34+1/2+ln2= 16/3 - 4 + 1/2 + \ln 2 =(3224+3)/6+ln2= (32 - 24 + 3)/6 + \ln 2 =11/6+ln2= 11/6 + \ln 2. Correct.

Difference: 179/1222/12+(2ln2ln2)179/12 - 22/12 + (2\ln 2 - \ln 2) =157/12+ln2= 157/12 + \ln 2. Correct.

Final check of the problem statement details. f(x)=12x2x+ln(1+x)f(x) = \frac{1}{2}x^2 - x + \ln(1+x). t=sf(s)t = s f'(s). f(x)=x1+11+x=x21+xf'(x) = x - 1 + \frac{1}{1+x} = \frac{x^2}{1+x}. t=s31+st = \frac{s^3}{1+s}. Integral limits: t=1/2t=1/2 to t=27/4t=27/4. s1s_1: 2s3s1=0    s=12s^3 - s - 1 = 0 \implies s=1. s2s_2: 4s327s27=0    s=34s^3 - 27s - 27 = 0 \implies s=3. Integral is 1/227/4g(t)dt=13sdtdsds\int_{1/2}^{27/4} g(t) dt = \int_1^3 s \frac{dt}{ds} ds. Everything looks consistent.

One detail: "distance between the foot of the perpendicular ... and the point where the tangent ... meets the y-axis". Foot of perp from (s,f(s))(s, f(s)) to y-axis is (0,f(s))(0, f(s)). Tangent y-intercept is (0,f(s)sf(s))(0, f(s) - s f'(s)). Distance is f(s)(f(s)sf(s))=sf(s)|f(s) - (f(s) - s f'(s))| = |s f'(s)|. Since s>0s>0 and f(s)=s21+s>0f'(s) = \frac{s^2}{1+s} > 0, distance is sf(s)s f'(s). This matches my derivation.

The integral is g(t)dt\int g(t) dt. Let u=g(t)u = g(t), so t=f(u)t = f(u) (using ff for the relation between tt and ss, not the original function). Actually, let's stick to ss and tt. s=g(t)s = g(t). t1t2sdt\int_{t_1}^{t_2} s \, dt. Integration by parts? sdt=[st]tds\int s \, dt = [st] - \int t \, ds. Let's check this alternative method. [st]s=1s=313s31+sds[st]_{s=1}^{s=3} - \int_1^3 \frac{s^3}{1+s} ds. t(3)=274t(3) = \frac{27}{4}. s=3    st=3274=814s=3 \implies st = 3 \cdot \frac{27}{4} = \frac{81}{4}. t(1)=12t(1) = \frac{1}{2}. s=1    st=112=12s=1 \implies st = 1 \cdot \frac{1}{2} = \frac{1}{2}. Boundary term: 81412=8124=794\frac{81}{4} - \frac{1}{2} = \frac{81-2}{4} = \frac{79}{4}.

Integral term: 13s31+sds\int_1^3 \frac{s^3}{1+s} ds. s31+s=s3+111+s=s2s+111+s\frac{s^3}{1+s} = \frac{s^3+1-1}{1+s} = s^2 - s + 1 - \frac{1}{1+s}. Integral is [13s312s2+sln(1+s)]13[\frac{1}{3}s^3 - \frac{1}{2}s^2 + s - \ln(1+s)]_1^3. At 3: 94.5+3ln4=7.52ln29 - 4.5 + 3 - \ln 4 = 7.5 - 2\ln 2. At 1: 1/31/2+1ln2=5/6ln21/3 - 1/2 + 1 - \ln 2 = 5/6 - \ln 2. Difference: (7.55/6)+(2ln2+ln2)(7.5 - 5/6) + (-2\ln 2 + \ln 2). 7.5=15/2=45/67.5 = 15/2 = 45/6. 45/65/6=40/6=20/345/6 - 5/6 = 40/6 = 20/3. So integral part is 20/3ln220/3 - \ln 2.

Total result: 794(203ln2)\frac{79}{4} - (\frac{20}{3} - \ln 2). =794203+ln2= \frac{79}{4} - \frac{20}{3} + \ln 2. =2378012+ln2= \frac{237 - 80}{12} + \ln 2 =15712+ln2= \frac{157}{12} + \ln 2.

Matches perfectly. p=157,q=12p=157, q=12. p+q=169p+q = 169.

One final check on the code execution to be absolutely sure. [/THOUGHT] [PYTHON] from sympy import symbols, integrate, ln, Rational

s = symbols('s', real=True, positive=True)

Method 1: Direct integration

integrand = (2s**4 + 3s**3) / (1 + s)**2 res1 = integrate(integrand, (s, 1, 3)) print(f"Method 1: {res1}")

Method 2: Integration by parts

int s dt = [st] - int t ds

term1 = Rational(79, 4) term2 = integrate(s**3 / (1 + s), (s, 1, 3)) res2 = term1 - term2 print(f"Method 2: {res2}")

Check equality

print(f"Equal? {res1 == res2}") [/PYTHON] [THOUGHT] Both methods yield the same result. The value is 15712+ln2\frac{157}{12} + \ln 2. p=157p = 157. q=12q = 12. p+q=169p+q = 169.

The question asks for p+qp+q. Final Answer seems to be 169. [/THOUGHT] [THOUGHT] I have verified the solution using two different integration methods and Python code. The value of the integral is 15712+ln2\frac{157}{12} + \ln 2. This is in the form pq+ln2\frac{p}{q} + \ln 2. p=157p = 157, q=12q = 12. p+q=157+12=169p+q = 157 + 12 = 169. I am confident in this result. [/THOUGHT] \boxed{169}

Tool Output
[PYTHON OUTPUT] s1 solutions: [1] s2 solutions: [3] dt/ds: -s**3/(s + 1)**2 + 3*s**2/(s + 1) Integrand: s*(-s**3/(s + 1)**2 + 3*s**2/(s + 1)) [/PYTHON OUTPUT] [PYTHON OUTPUT] Result: -log(2) + log(4) + 157/12 Simplified Result: log(2) + 157/12 [/PYTHON OUTPUT] [PYTHON OUTPUT] Result: -log(2) + log(4) + 157/12 Expected: log(2) + 157/12 Difference: 0 [/PYTHON OUTPUT] [PYTHON OUTPUT] Method 1: -log(2) + log(4) + 157/12 Method 2: -log(2) + log(4) + 157/12 Equal? True [/PYTHON OUTPUT]
Reasoning Process

\boxed{169}

Final Model Output
169

Comparative Analysis (P42) (Average across runs)

Avg Time Taken

Deepseek-V3.2
99.4
Llama-VARCO-8B-Instruct
79.8
Gemini-3-Pro-Preview
70.0
A.X-4.0 (72B)
62.6
Grok-4.1-fast
47.3
Solar-Pro-2 (31B)(high)
43.4
HCX-007(high)
35.7
Claude-Opus-4.5
30.1
GPT-5.1 (high)
28.7
EXAONE-4.0.1-32B (high)
6.5

Avg Token Usage

Gemini-3-Pro-Preview
13341.0
Claude-Opus-4.5
9394.0
Solar-Pro-2 (31B)(high)
8403.0
Grok-4.1-fast
7387.0
A.X-4.0 (72B)
5760.0
Deepseek-V3.2
5146.0
HCX-007(high)
4718.0
GPT-5.1 (high)
4687.0
EXAONE-4.0.1-32B (high)
4223.0
Llama-VARCO-8B-Instruct
3954.0