Problem Analysis #5

246.22s
14,044 toks
Problem Statement

Consider the following procedure that generates a sequence of random variables that take the value 00 or 11. For an integer n1n \ge 1, we denote the nn-th random variable of a sequence generated by the procedure as XnX_n.

  • X1X_1 becomes X1=0X_1 = 0 with probability 23\dfrac{2}{3} and X1=1X_1 = 1 with probability 13\dfrac{1}{3}.

  • For integers n=1,2,n = 1,2,\ldots in order, the following is repeated until the procedure terminates:

  • The procedure terminates with probability pp (0<p<10 < p < 1) if Xn=0X_n = 0, and with probability qq (0<q<10 < q < 1) if Xn=1X_n = 1. Here pp and qq are fixed constants.

  • If the procedure does not terminate at step nn, then Xn+1X_{n+1} becomes 00 with probability 23\dfrac{2}{3} and 11 with probability 13\dfrac{1}{3}.

When the procedure terminates at n=n = \ell, a sequence of length \ell, composed of random variables (X1,,X)(X_1,\ldots, X_\ell), is generated, and no further random variables are generated.\subsection*{I.}For an integer k1k \ge 1, consider the matrixPk=(Pr(Xn+k=0Xn=0)Pr(Xn+k=1Xn=0)Pr(Xn+k=0Xn=1)Pr(Xn+k=1Xn=1)).P_k =\begin{pmatrix}\Pr(X_{n+k} = 0 \mid X_n = 0) & \Pr(X_{n+k} = 1 \mid X_n = 0) \\\Pr(X_{n+k} = 0 \mid X_n = 1) & \Pr(X_{n+k} = 1 \mid X_n = 1)\end{pmatrix}.

  • [(1)] Express P1P_1 and P2P_2 in terms of pp and qq.

  • [(2)] Express P3P_3 using P1P_1.

  • [(3)] The matrix PkP_k can be expressed in the form Pk=γkP1P_k = \gamma_k P_1 for a real number γk\gamma_k. Find γk\gamma_k. \subsection*{II.}For an integer m2m \ge 2, find the respective probabilities that Xm=0X_m = 0 and Xm=1X_m = 1, given that the procedure does not terminate before n=mn = m.\subsection*{III.}Let \ell be the length of the sequence generated by the procedure. Find the expected value and the variance of \ell. If necessary, you may usem=1mrm1=1(1r)2,m=1m2rm1=1+r(1r)3\sum_{m=1}^{\infty} m r^{m-1} = \frac{1}{(1-r)^2},\qquad\sum_{m=1}^{\infty} m^2 r^{m-1} = \frac{1+r}{(1-r)^3}for a real number rr with r<1|r| < 1.\subsection*{IV.}For an integer k1k \ge 1, find the probability Pr(Xn=0Xn+k=1)\Pr(X_n = 0 \mid X_{n+k} = 1).\subsection*{V. Final quantity}In this part, assume p=12p = \dfrac{1}{2} and q=13q = \dfrac{1}{3}.

  • Let α\alpha be the probability in {\rm IV} for these values of pp and qq: α:=Pr(Xn=0Xn+k=1). \alpha := \Pr(X_n = 0 \mid X_{n+k} = 1).

  • Let β\beta be the expected value of \ell obtained in {\rm III}, and let σ2\sigma^2 be the variance of \ell in {\rm III}.

  • In {\rm I(3)}, P2P_2 can be written as P2=γ2P1P_2 = \gamma_2 P_1. Let λ:=γ2 \lambda := \gamma_2 for p=12p = \dfrac{1}{2} and q=13q = \dfrac{1}{3}. DefineK=13320(αβ+σ2λ)+7.\mathcal{K}= 13 \cdot 320\left( \alpha \beta + \frac{\sigma^2}{\lambda} \right) + 7.Compute the integer K\mathcal{K}.\

Ground Truth
26683
Execution Trace
Reasoning Process

To solve the problem, I will perform the following steps using Python:

  1. Define the Parameters: Set p=1/2p = 1/2 and q=1/3q = 1/3.
  2. Verify Matrix Properties:
    • Construct the matrix P1P_1.
    • Calculate S=trace(P1)S = \text{trace}(P_1).
    • Verify P12=SP1P_1^2 = S \cdot P_1.
    • This confirms γ2=λ=S\gamma_2 = \lambda = S.
  3. Compute α\alpha:
    • Use the derived formula α=231pS\alpha = \frac{2}{3} \frac{1-p}{S}.
    • Verify this by computing the ratio of probabilities for specific n,kn, k (e.g., n=1,k=1n=1, k=1) using exact matrix operations.
  4. Compute β\beta and σ2\sigma^2:
    • Use the formulas for the mean and variance of the geometric-like distribution of \ell:
      • β=E[]=11S\beta = E[\ell] = \frac{1}{1-S}.
      • σ2=Var()=S(1S)2\sigma^2 = Var(\ell) = \frac{S}{(1-S)^2}.
  5. Calculate K\mathcal{K}:
    • Compute the expression K=13320(αβ+σ2λ)+7\mathcal{K} = 13 \cdot 320 \left( \alpha \beta + \frac{\sigma^2}{\lambda} \right) + 7.
    • Ensure the result is an integer.

[PYTHON] import numpy as np from fractions import Fraction

def solve(): # Parameters p = Fraction(1, 2) q = Fraction(1, 3)

# Terms for P1
# P1 = [[P(X_{n+1}=0|X_n=0), P(X_{n+1}=1|X_n=0)],
#       [P(X_{n+1}=0|X_n=1), P(X_{n+1}=1|X_n=1)]]

# Row 0 (given X_n=0): continues with 1-p
# Then X_{n+1} is 0 with 2/3, 1 with 1/3
p00 = (1 - p) * Fraction(2, 3)
p01 = (1 - p) * Fraction(1, 3)

# Row 1 (given X_n=1): continues with 1-q
# Then X_{n+1} is 0 with 2/3, 1 with 1/3
p10 = (1 - q) * Fraction(2, 3)
p11 = (1 - q) * Fraction(1, 3)

P1 = np.array([[p00, p01], [p10, p11]])
print("P1:")
print(P1)

# Calculate S (trace)
S = p00 + p11
print(f"S (trace): {S}")

# Verify P1^2 = S * P1
P2 = P1.dot(P1)
S_P1 = float(S) * P1.astype(float) # Cast to float for comparison if needed, or keep object
# Let's do exact check
P2_exact = np.array([[P1[0,0]*P1[0,0] + P1[0,1]*P1[1,0], P1[0,0]*P1[0,1] + P1[0,1]*P1[1,1]],
                     [P1[1,0]*P1[0,0] + P1[1,1]*P1[1,0], P1[1,0]*P1[0,1] + P1[1,1]*P1[1,1]]])

print("P2 exact:")
print(P2_exact)
print("S * P1:")
print(S * P1)

# Lambda is gamma_2 which is S
lam = S

# Alpha
# Formula: alpha = (2/3) * (1-p) / S
alpha = Fraction(2, 3) * (1 - p) / S
print(f"Alpha: {alpha}")

# Verify Alpha numerically for n=1, k=1
# P(X_1=0 | X_2=1) = P(X_1=0, X_2=1) / P(X_2=1)
# P(X_1=0) = 2/3
# P(X_2=1, X_1=0) = P(X_1=0) * P(X_2=1 | X_1=0) = (2/3) * p01
# P(X_2=1) = P(X_1=0)*p01 + P(X_1=1)*p11 = (2/3)*p01 + (1/3)*p11

num = Fraction(2, 3) * p01
den = Fraction(2, 3) * p01 + Fraction(1, 3) * p11
alpha_check = num / den
print(f"Alpha check (n=1, k=1): {alpha_check}")

# Beta (Expected value of l)
# E[l] = 1 / (1 - S)
beta = 1 / (1 - S)
print(f"Beta: {beta}")

# Sigma squared (Variance of l)
# Var(l) = S / (1 - S)^2
sigma2 = S / ((1 - S) ** 2)
print(f"Sigma^2: {sigma2}")

# Calculate K
# K = 13 * 320 * (alpha * beta + sigma2 / lam) + 7
term1 = alpha * beta
term2 = sigma2 / lam
bracket = term1 + term2
K = 13 * 320 * bracket + 7

print(f"Term1 (alpha*beta): {term1}")
print(f"Term2 (sigma2/lam): {term2}")
print(f"Bracket: {bracket}")
print(f"K: {K}")

solve() [/PYTHON]

Tool Output
[PYTHON OUTPUT] P1: [[Fraction(1, 3) Fraction(1, 6)] [Fraction(4, 9) Fraction(2, 9)]] S (trace): 5/9 P2 exact: [[Fraction(5, 27) Fraction(5, 54)] [Fraction(20, 81) Fraction(10, 81)]] S * P1: [[Fraction(5, 27) Fraction(5, 54)] [Fraction(20, 81) Fraction(10, 81)]] Alpha: 3/5 Alpha check (n=1, k=1): 3/5 Beta: 9/4 Sigma^2: 45/16 Term1 (alpha*beta): 27/20 Term2 (sigma2/lam): 81/16 Bracket: 513/80 K: 26683 [/PYTHON OUTPUT]
Reasoning Process

The calculated values are:

  • p=1/2p = 1/2, q=1/3q = 1/3.
  • The trace of P1P_1 is S=5/9S = 5/9.
  • λ=γ2=S=5/9\lambda = \gamma_2 = S = 5/9.
  • α=3/5\alpha = 3/5.
  • β=9/4\beta = 9/4.
  • σ2=45/16\sigma^2 = 45/16.
  • The term inside the parenthesis is αβ+σ2λ=2720+8116=51380\alpha \beta + \frac{\sigma^2}{\lambda} = \frac{27}{20} + \frac{81}{16} = \frac{513}{80}.
  • K=1332051380+7=134513+7=52513+7=26676+7=26683\mathcal{K} = 13 \cdot 320 \cdot \frac{513}{80} + 7 = 13 \cdot 4 \cdot 513 + 7 = 52 \cdot 513 + 7 = 26676 + 7 = 26683.

\boxed{26683}

Final Model Output
26683

Comparative Analysis (P5) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
467.8
Llama-VARCO-8B-Instruct
340.9
Solar-Pro-2 (31B)(high)
321.5
Deepseek-V3.2
272.4
Gemini-3-Pro-Preview
246.2
A.X-4.0 (72B)
191.5
Grok-4.1-fast
53.5
Claude-Opus-4.5
42.6
EXAONE-4.0.1-32B (high)
20.3
HCX-007(high)
18.8

Avg Token Usage

Solar-Pro-2 (31B)(high)
23391.0
A.X-4.0 (72B)
20243.0
GPT-5.1 (high)
19161.0
Deepseek-V3.2
16929.0
Llama-VARCO-8B-Instruct
16067.0
Claude-Opus-4.5
14573.0
Gemini-3-Pro-Preview
14044.0
Grok-4.1-fast
13647.0
EXAONE-4.0.1-32B (high)
6754.0
HCX-007(high)
5076.0