Problem Analysis #6

47.59s
7,889 toks
Problem Statement

\subsection*{I.}Find the general solution y(x)y(x) of the following differential equation:dydx=y(1y),\frac{dy}{dx} = y(1-y),where 0<y<10 < y < 1.\subsection*{II.}Find the value of the definite integralI=11arccos(x2)cos2(π3x)dx,I = \int_{-1}^{1} \frac{\arccos\left(\dfrac{x}{2}\right)}{\cos^2\left(\dfrac{\pi}{3}x\right)} \, dx,where 0 $$\leq$$ \arccos\left(\dfrac{x}{2}\right) $$\leq$$ $$\pi$$$.\subsection*{III.}For any positive variable x, define$$f(x) = \sum_{m=0}^{\infty} \frac{1}{(2m)!} x^{2m},\qquadg(x) = \frac{d}{dx} f(x).$$For any non-negative integer n$, defineIn(x)=0x(g(X)f(X))ndX.I_n(x) = \int_0^x \left(\frac{g(X)}{f(X)}\right)^n \, dX.You may useexp(x)=m=0xmm!.\exp(x) = \sum_{m=0}^{\infty} \frac{x^m}{m!}.

  • [(1)] Calculate f(x)2g(x)2f(x)^2 - g(x)^2.
  • [(2)] Express In+2(x)I_{n+2}(x) using In(x)I_n(x). \subsection*{IV. Final quantity}Let y(x)y_*(x) be the solution of the differential equation in {\rm I} that satisfiesy(0)=12,y_*(0) = \frac{1}{2},and definea:=y(ln3).a := y_*(\ln 3).In {\rm II}, let II be the value of the definite integral. In {\rm III}, letx0=ln(2+3),\qquadF0:=f(x0),G0:=g(x0).x_0 = \ln(2+\sqrt{3}),\qquadF_0 := f(x_0),\quad G_0 := g(x_0).DefineS:=4a+IG0+F0,K:=999S2+7.S := 4a + \frac{I}{G_0} + F_0,\qquad\mathcal{K} := 999\,S^2 + 7.Compute the integer K\mathcal{K}.\
Ground Truth
63943
Execution Trace
Reasoning Process

The problem asks for the calculation of a final integer K\mathcal{K} based on several intermediate quantities derived from differential equations, integrals, and series.

Part I: Differential Equation The differential equation is dydx=y(1y)\frac{dy}{dx} = y(1-y) with y(0)=1/2y_*(0) = 1/2. This is the logistic equation. The solution satisfying the initial condition is y(x)=ex1+exy_*(x) = \frac{e^x}{1+e^x}. We need a=y(ln3)a = y_*(\ln 3). a=eln31+eln3=31+3=34a = \frac{e^{\ln 3}}{1+e^{\ln 3}} = \frac{3}{1+3} = \frac{3}{4}.

Part II: Definite Integral We need to compute I=11arccos(x/2)cos2(πx/3)dxI = \int_{-1}^{1} \frac{\arccos(x/2)}{\cos^2(\pi x/3)} \, dx. Using the symmetry property arccos(x)=πarccos(x)\arccos(-x) = \pi - \arccos(x) (specifically arccos(x/2)=πarccos(x/2)\arccos(-x/2) = \pi - \arccos(x/2)) and the evenness of cos2(πx/3)\cos^2(\pi x/3), we can show that 2I=π11sec2(πx/3)dx2I = \pi \int_{-1}^{1} \sec^2(\pi x/3) \, dx. Evaluating this integral yields I=33I = 3\sqrt{3}.

Part III: Series and Functions The functions are f(x)=cosh(x)f(x) = \cosh(x) and g(x)=sinh(x)g(x) = \sinh(x). We evaluate these at x0=ln(2+3)x_0 = \ln(2+\sqrt{3}). F0=cosh(x0)=2F_0 = \cosh(x_0) = 2. G0=sinh(x0)=3G_0 = \sinh(x_0) = \sqrt{3}.

Part IV: Final Calculation We compute S=4a+IG0+F0S = 4a + \frac{I}{G_0} + F_0. Substituting the values: S=4(3/4)+333+2=3+3+2=8S = 4(3/4) + \frac{3\sqrt{3}}{\sqrt{3}} + 2 = 3 + 3 + 2 = 8. Finally, K=999S2+7=999(64)+7=63936+7=63943\mathcal{K} = 999 S^2 + 7 = 999(64) + 7 = 63936 + 7 = 63943.

[PYTHON] import numpy as np from scipy.integrate import quad

Part I

def y_star(x): return np.exp(x) / (1 + np.exp(x))

a = y_star(np.log(3)) print(f"{a=}")

Part II

def integrand(x): return np.arccos(x/2) / (np.cos(np.pi * x / 3)**2)

I_val, error = quad(integrand, -1, 1) print(f"{I_val=}")

Part III

x0 = np.log(2 + np.sqrt(3)) F0 = np.cosh(x0) G0 = np.sinh(x0) print(f"{F0=}") print(f"{G0=}")

Part IV

S = 4 * a + I_val / G0 + F0 print(f"{S=}")

K = 999 * S**2 + 7 print(f"{K=}") [/PYTHON] [THOUGHT] The Python code confirms the manual calculations. a=0.75=3/4a = 0.75 = 3/4. I5.19615I \approx 5.19615, which is 333×1.73205=5.196153\sqrt{3} \approx 3 \times 1.73205 = 5.19615. F0=2.0F_0 = 2.0. G01.73205=3G_0 \approx 1.73205 = \sqrt{3}. S=8.0S = 8.0. K=63943.0K = 63943.0.

The result is an integer as expected. [/THOUGHT]

\boxed{63943}

Tool Output
[PYTHON OUTPUT] a=np.float64(0.7500000000000001) I_val=5.196152422706632 F0=np.float64(1.9999999999999998) G0=np.float64(1.732050807568877) S=np.float64(8.0) K=np.float64(63943.0) [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python code computed the values:

  • a=0.75a = 0.75
  • I5.196I \approx 5.196 (which corresponds to 333\sqrt{3})
  • F02F_0 \approx 2
  • G01.732G_0 \approx 1.732 (which corresponds to 3\sqrt{3})
  • S=8.0S = 8.0
  • K=63943.0\mathcal{K} = 63943.0

The calculation is: S=4(0.75)+333+2=3+3+2=8S = 4(0.75) + \frac{3\sqrt{3}}{\sqrt{3}} + 2 = 3 + 3 + 2 = 8. K=999(82)+7=999(64)+7=63936+7=63943\mathcal{K} = 999(8^2) + 7 = 999(64) + 7 = 63936 + 7 = 63943.

The result is an integer. [/THOUGHT]

\boxed{63943}

Final Model Output
63943

Comparative Analysis (P6) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
57.7
HCX-007(high)
55.6
Llama-VARCO-8B-Instruct
54.7
Deepseek-V3.2
48.3
Gemini-3-Pro-Preview
47.6
A.X-4.0 (72B)
45.4
Solar-Pro-2 (31B)(high)
40.2
Grok-4.1-fast
29.0
Claude-Opus-4.5
20.6
EXAONE-4.0.1-32B (high)
11.1

Avg Token Usage

HCX-007(high)
10581.0
EXAONE-4.0.1-32B (high)
9149.0
Solar-Pro-2 (31B)(high)
9027.0
GPT-5.1 (high)
8547.0
Grok-4.1-fast
8351.0
Gemini-3-Pro-Preview
7889.0
A.X-4.0 (72B)
7410.0
Claude-Opus-4.5
5887.0
Deepseek-V3.2
5395.0
Llama-VARCO-8B-Instruct
1716.0