Problem Analysis #7

238.54s
10,464 toks
Problem Statement

Answer the following questions about a real symmetric matrix AA:A=(012102223).A =\begin{pmatrix}0 & 1 & 2 \\1 & 0 & 2 \\2 & 2 & 3\end{pmatrix}.

  • [I.] Find all the different eigenvalues of matrix AA, λ1,,λr\lambda_1, \cdots, \lambda_r (λ1<<λr\lambda_1 < \cdots < \lambda_r).
  • [II.] Find all the eigenspaces W(λ1),,W(λr)W(\lambda_1), \cdots, W(\lambda_r) corresponding to λ1,,λr\lambda_1, \cdots, \lambda_r, respectively.
  • [III.] Find an orthonormal basis b1,b2,b3b_1, b_2, b_3 consisting of eigenvectors of AA, each belonging to one of W(λ1),,W(λr)W(\lambda_1), \cdots, W(\lambda_r) obtained in Question II.
  • [IV.] Find the spectral decomposition of AA: A=i=1rλiPi, A = \sum_{i=1}^{r} \lambda_i P_i, where PiP_i is the projection matrix onto W(λi)W(\lambda_i).
  • [V.] Find AnA^n, where nn is any positive integer.
  • [VI.] Let λ1<λ2\lambda_1 < \lambda_2 be the eigenvalues from {\rm I}, and let d1:=dimW(λ1). d_1 := \dim W(\lambda_1). Let b1,b2,b3b_1,b_2,b_3 be the orthonormal eigenbasis from {\rm III}, and assume b3W(λ2)b_3 \in W(\lambda_2). Denote by (b3)1(b_3)_1 the first component of b3b_3, and set β:=(b3)12. \beta := |(b_3)_1|^2. For n=10n=10, let S10S_{10} be the sum of all entries of the matrix A10A^{10}: S10:=i=13j=13(A10)ij. S_{10} := \sum_{i=1}^3 \sum_{j=1}^3 (A^{10})_{ij}. Define S:=(λ2λ1)d1β1S10,K:=999S2+7. S := (\lambda_2 - \lambda_1)\, d_1\, \beta^{-1} S_{10}, \qquad \mathcal{K} := 999\,S^2 + 7. Compute the integer K\mathcal{K}. \
Ground Truth
3512109464910000575431
Execution Trace
Reasoning Process

[THOUGHT] I will define the matrix AA using SymPy to ensure exact arithmetic. Then I will calculate the eigenvalues and eigenvectors. I will identify λ1\lambda_1 and λ2\lambda_2 such that λ1<λ2\lambda_1 < \lambda_2. I will determine the dimension d1d_1 of the eigenspace W(λ1)W(\lambda_1). I will find the eigenvector b3b_3 associated with λ2\lambda_2, normalize it, and find its first component to compute β\beta. I will compute A10A^{10} and the sum of its entries S10S_{10}. Finally, I will compute SS and K\mathcal{K}.

[/THOUGHT] [PYTHON] import sympy as sp

Define the matrix A

A = sp.Matrix([ [0, 1, 2], [1, 0, 2], [2, 2, 3] ])

1. Find eigenvalues and eigenvectors

eigen_info = A.eigenvects()

eigen_info is a list of tuples: (eigenvalue, multiplicity, [eigenvectors])

print("Eigenvalues and Eigenvectors:") for val, mult, vecs in eigen_info: print(f"Lambda: {val}, Multiplicity: {mult}, Vectors: {vecs}")

Extract eigenvalues

eigenvalues = sorted([val for val, _, _ in eigen_info]) print(f"Sorted unique eigenvalues: {eigenvalues}")

Assign lambda_1 and lambda_2

The problem implies there are distinct eigenvalues lambda_1 < ... < lambda_r

lambda_1 = eigenvalues[0] lambda_2 = eigenvalues[1] # Assuming there are at least 2. If there are 3, I need to check the problem statement carefully.

The problem mentions lambda_1 < lambda_2 and b_3 in W(lambda_2).

If there are 3 distinct eigenvalues, the notation lambda_1 < lambda_2 usually refers to the sorted list.

However, the problem later says "assume b_3 in W(lambda_2)". If there were 3, b_3 would be the 3rd basis vector.

Let's check the output first.

2. Calculate d_1

d_1 is dim(W(lambda_1))

d_1 = [mult for val, mult, _ in eigen_info if val == lambda_1][0] print(f"d_1 (dim W(lambda_1)): {d_1}")

3. Find b_3 and beta

b_3 is in W(lambda_2).

We need an orthonormal basis.

Find eigenvectors for lambda_2

vecs_lambda2 = [vec for val, _, vecs in eigen_info if val == lambda_2 for vec in vecs]

If dim(W(lambda_2)) == 1, b_3 is just the normalized eigenvector.

If dim > 1, there's ambiguity, but let's see the multiplicity first.

v3 = vecs_lambda2[0] norm_v3 = v3.norm() b3 = v3 / norm_v3 print(f"b_3 (unsimplified): {b3}")

beta = |(b_3)_1|^2

b3_1 = b3[0] beta = sp.Abs(b3_1)**2 print(f"beta: {beta}")

4. Calculate A^10 and S_10

A_10 = A**10 S_10 = sum(A_10) print(f"S_10: {S_10}")

5. Calculate S and K

S = (lambda_2 - lambda_1) * d_1 * beta^(-1) * S_10

K = 999 * S^2 + 7

S = (lambda_2 - lambda_1) * d_1 * (1/beta) * S_10 print(f"S (symbolic): {S}") K = 999 * S**2 + 7 print(f"K (symbolic): {K}") print(f"K (numeric): {float(K)}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] Eigenvalues and Eigenvectors: Lambda: -1, Multiplicity: 2, Vectors: [Matrix([ [-1], [ 1], [ 0]]), Matrix([ [-2], [ 0], [ 1]])] Lambda: 5, Multiplicity: 1, Vectors: [Matrix([ [1/2], [1/2], [ 1]])] Sorted unique eigenvalues: [-1, 5] d_1 (dim W(lambda_1)): 2 b_3 (unsimplified): Matrix([[sqrt(6)/6], [sqrt(6)/6], [sqrt(6)/3]]) beta: 1/6 S_10: 26041667 S (symbolic): 1875000024 K (symbolic): 3512109464910000575431 K (numeric): 3.512109464910001e+21 [/PYTHON OUTPUT]
Reasoning Process

The eigenvalues of AA are λ1=1\lambda_1 = -1 (multiplicity 2) and λ2=5\lambda_2 = 5 (multiplicity 1). The dimension of the eigenspace W(λ1)W(\lambda_1) is d1=2d_1 = 2. The eigenvector corresponding to λ2=5\lambda_2 = 5 is v3=(1,1,2)Tv_3 = (1, 1, 2)^T. Normalizing this vector gives b3=16(1,1,2)Tb_3 = \frac{1}{\sqrt{6}}(1, 1, 2)^T. The first component of b3b_3 is (b3)1=16(b_3)_1 = \frac{1}{\sqrt{6}}, so β=(b3)12=16\beta = |(b_3)_1|^2 = \frac{1}{6}. The sum of entries of A10A^{10} is S10=26041667S_{10} = 26041667. The value SS is calculated as: [ S = (\lambda_2 - \lambda_1) d_1 \beta^{-1} S_{10} = (5 - (-1)) \cdot 2 \cdot 6 \cdot 26041667 = 6 \cdot 12 \cdot 26041667 = 72 \cdot 26041667 = 1875000024. ] Finally, K=999S2+7\mathcal{K} = 999 S^2 + 7. Using Python for the large integer arithmetic: [ \mathcal{K} = 999 \times (1875000024)^2 + 7 = 3512109464910000575431. ]

\boxed{3512109464910000575431}

Final Model Output
3512109464910000575431

Comparative Analysis (P7) (Average across runs)

Avg Time Taken

Deepseek-V3.2
716.8
Gemini-3-Pro-Preview
238.5
Llama-VARCO-8B-Instruct
171.0
GPT-5.1 (high)
91.4
Grok-4.1-fast
70.1
Solar-Pro-2 (31B)(high)
68.0
Claude-Opus-4.5
34.8
A.X-4.0 (72B)
32.0
HCX-007(high)
29.5
EXAONE-4.0.1-32B (high)
2.2

Avg Token Usage

Grok-4.1-fast
14838.0
Deepseek-V3.2
14663.0
Llama-VARCO-8B-Instruct
13773.0
Solar-Pro-2 (31B)(high)
12124.0
GPT-5.1 (high)
11204.0
Gemini-3-Pro-Preview
10464.0
Claude-Opus-4.5
10354.0
A.X-4.0 (72B)
5137.0
HCX-007(high)
4970.0
EXAONE-4.0.1-32B (high)
3503.0