Problem Analysis #28

35.02s
1,224 toks
Problem Statement

Consider two points A(5,0)A(5,0) and B(5,0)B(-5,0) in the coordinate plane. A point CC and a point PP in the same plane satisfy the following conditions:(i)AC=6,(ii)A point P lies on segment AC,(iii)BP+CP=8.\begin{aligned}\text{(i)} &\quad \overline{\text{AC}} = 6,\\\text{(ii)} &\quad \text{A point P lies on segment } AC,\\\text{(iii)} &\quad \overline{\text{BP}} + \overline{\text{CP}} = 8.\end{aligned}Let A=θ\angle A = \theta in triangle ABCABC, and let the area of triangle BCPBCP be denoted by f(θ)f(\theta).For an angle β\beta satisfyingcosβ=45,0<β<π2,\cos \beta = \frac{4}{5}, \qquad 0 < \beta < \frac{\pi}{2},assume thatf(β)=pq,f'(\beta) = -\frac{p}{q},where pp and qq are relatively prime positive integers.(Also, point CC does not lie on segment ABAB, and point PP is distinct from point CC.)Find the value ofp+q2.p + q^{2}.oindent

Ground Truth
721
Execution Trace
Reasoning Process

[THOUGHT]

The problem gives us a triangle ABCABC where A=θ\angle A = \theta, AC=6AC=6, and B=(5,0)B=(-5,0) while A=(5,0)A=(5,0). Point PP lies on segment ACAC and BP+CP=8BP+CP=8.

First, let's find the length of BCBC using the Law of Cosines: [ BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos(\theta) ] Given that AB=10AB=10, AC=6AC=6, and cosβ=45\cos\beta=\frac{4}{5}, we can find θ\theta from the given cosine value: [ \cos\theta = \frac{BC^2 - 100 + 36}{2 \cdot 5 \cdot 6} = \frac{BC^2-64}{60} = \cos\beta = \frac{4}{5} ] This leads to BC2=100BC^2=100 and BC=10BC=10.

Now, let's express the area of triangle BCPBCP, denoted by f(θ)f(\theta), as a function of θ\theta. The base BPBP can be written as 8CP8-CP, so the area is: [ f(\theta) = \frac{1}{2} \cdot (8-CP) \cdot h_{BCP} ] where hBCPh_{BCP} is the height from point CC to line ABAB.

Since ABC\triangle ABC is a right triangle with BAC=θ\angle BAC=\theta, we can use trigonometric ratios to find hBCPh_{BCP}: [ \tan\theta = \frac{BC}{AB} = \frac{10}{10}=1, \quad \therefore \sin\theta = 1, \cos\theta=0 ] Hence, [ h_{BCP} = BC \cdot \sin(\pi/2 - \theta) = 10 \cdot \sin(90^\circ-\arctan(1)) = 10 \cdot \frac{1}{\sqrt{2}} = 5\sqrt{2} ]

So the area function becomes: [ f(\theta) = \frac{1}{2} \cdot (8-CP) \cdot 5\sqrt{2} = -5\sqrt{2}(8-6\cos\theta) ] Differentiating ff with respect to θ\theta, we get: [ f'(\theta) = -5\sqrt{2}(-6\sin\theta) = 30\sqrt{2}\sin\theta ]

Given that cosβ=45\cos\beta=\frac{4}{5}, we can find sinβ\sin\beta using the Pythagorean identity: [ \sin^2\beta + \cos^2\beta = 1 ] [ \sin^2\beta = 1 - (\frac{4}{5})^2 = \frac{9}{25} ] [ \sin\beta = \sqrt{\frac{9}{25}} = \frac{3}{5} ]

Since θ=arccos(cosβ)\theta=\arccos(\cos\beta), we have: [ f'(\beta) = 30\sqrt{2}\sin(\arccos(4/5)) = 30\sqrt{2} \cdot \frac{3}{5} = 18\sqrt{2} ]

Now pp and qq are the integer part and square of the decimal part, respectively: [ p = 18, q=\sqrt{2} \approx 1.414 ] Hence, [ p + q^2 = 18 + (1.414)^2 \approx 19.33 ]

Since we need an integer answer, we take the floor of 19.3319.33: [ \boxed{19} ]

Final Model Output
19

Comparative Analysis (P28) (Average across runs)

Avg Time Taken

Deepseek-V3.2
508.6
EXAONE-4.0.1-32B (high)
214.8
Solar-Pro-2 (31B)(high)
190.5
Gemini-3-Pro-Preview
129.8
GPT-5.1 (high)
69.8
Claude-Opus-4.5
68.5
A.X-4.0 (72B)
56.7
HCX-007(high)
37.4
Llama-VARCO-8B-Instruct
35.0
Grok-4.1-fast
29.9

Avg Token Usage

Claude-Opus-4.5
31624.0
EXAONE-4.0.1-32B (high)
17509.0
Solar-Pro-2 (31B)(high)
11892.0
Deepseek-V3.2
9057.0
Grok-4.1-fast
7316.0
GPT-5.1 (high)
7155.0
Gemini-3-Pro-Preview
6414.0
HCX-007(high)
4909.0
A.X-4.0 (72B)
4067.0
Llama-VARCO-8B-Instruct
1224.0