Problem Analysis #5

467.85s
19,161 toks
Problem Statement

Consider the following procedure that generates a sequence of random variables that take the value 00 or 11. For an integer n1n \ge 1, we denote the nn-th random variable of a sequence generated by the procedure as XnX_n.

  • X1X_1 becomes X1=0X_1 = 0 with probability 23\dfrac{2}{3} and X1=1X_1 = 1 with probability 13\dfrac{1}{3}.

  • For integers n=1,2,n = 1,2,\ldots in order, the following is repeated until the procedure terminates:

  • The procedure terminates with probability pp (0<p<10 < p < 1) if Xn=0X_n = 0, and with probability qq (0<q<10 < q < 1) if Xn=1X_n = 1. Here pp and qq are fixed constants.

  • If the procedure does not terminate at step nn, then Xn+1X_{n+1} becomes 00 with probability 23\dfrac{2}{3} and 11 with probability 13\dfrac{1}{3}.

When the procedure terminates at n=n = \ell, a sequence of length \ell, composed of random variables (X1,,X)(X_1,\ldots, X_\ell), is generated, and no further random variables are generated.\subsection*{I.}For an integer k1k \ge 1, consider the matrixPk=(Pr(Xn+k=0Xn=0)Pr(Xn+k=1Xn=0)Pr(Xn+k=0Xn=1)Pr(Xn+k=1Xn=1)).P_k =\begin{pmatrix}\Pr(X_{n+k} = 0 \mid X_n = 0) & \Pr(X_{n+k} = 1 \mid X_n = 0) \\\Pr(X_{n+k} = 0 \mid X_n = 1) & \Pr(X_{n+k} = 1 \mid X_n = 1)\end{pmatrix}.

  • [(1)] Express P1P_1 and P2P_2 in terms of pp and qq.

  • [(2)] Express P3P_3 using P1P_1.

  • [(3)] The matrix PkP_k can be expressed in the form Pk=γkP1P_k = \gamma_k P_1 for a real number γk\gamma_k. Find γk\gamma_k. \subsection*{II.}For an integer m2m \ge 2, find the respective probabilities that Xm=0X_m = 0 and Xm=1X_m = 1, given that the procedure does not terminate before n=mn = m.\subsection*{III.}Let \ell be the length of the sequence generated by the procedure. Find the expected value and the variance of \ell. If necessary, you may usem=1mrm1=1(1r)2,m=1m2rm1=1+r(1r)3\sum_{m=1}^{\infty} m r^{m-1} = \frac{1}{(1-r)^2},\qquad\sum_{m=1}^{\infty} m^2 r^{m-1} = \frac{1+r}{(1-r)^3}for a real number rr with r<1|r| < 1.\subsection*{IV.}For an integer k1k \ge 1, find the probability Pr(Xn=0Xn+k=1)\Pr(X_n = 0 \mid X_{n+k} = 1).\subsection*{V. Final quantity}In this part, assume p=12p = \dfrac{1}{2} and q=13q = \dfrac{1}{3}.

  • Let α\alpha be the probability in {\rm IV} for these values of pp and qq: α:=Pr(Xn=0Xn+k=1). \alpha := \Pr(X_n = 0 \mid X_{n+k} = 1).

  • Let β\beta be the expected value of \ell obtained in {\rm III}, and let σ2\sigma^2 be the variance of \ell in {\rm III}.

  • In {\rm I(3)}, P2P_2 can be written as P2=γ2P1P_2 = \gamma_2 P_1. Let λ:=γ2 \lambda := \gamma_2 for p=12p = \dfrac{1}{2} and q=13q = \dfrac{1}{3}. DefineK=13320(αβ+σ2λ)+7.\mathcal{K}= 13 \cdot 320\left( \alpha \beta + \frac{\sigma^2}{\lambda} \right) + 7.Compute the integer K\mathcal{K}.\

Ground Truth
26683
Execution Trace
Reasoning Process

[THOUGHT] I will symbolically derive all needed expressions using Python (sympy) and then compute the final integer value of K for p = 1/2 and q = 1/3. [/THOUGHT] [PYTHON] from sympy import symbols, Matrix, Rational, factor, simplify

Define symbols

p, q, k = symbols('p q k', positive=True)

Survival factors

a = 1 - p b = 1 - q

Base transition (given survival): rows identical [2/3, 1/3]

B = Matrix([[Rational(2,3), Rational(1,3)], [Rational(2,3), Rational(1,3)]])

T = sub-stochastic transition including survival

T = Matrix([[aRational(2,3), aRational(1,3)], [bRational(2,3), bRational(1,3)]])

P1 = T print("P1 =") print(P1)

Compute P2, P3

P2 = T2 P3 = T3 print("\nP2 =") print(P2) print("\nP3 =") print(P3)

Check rank-1 structure: find lambda0 such that T^2 = lambda0*T

Since T is rank 1, eigenvalue should be v^T u

lambda0 = Rational(2,3)*a + Rational(1,3)*b print("\nlambda0 =", lambda0)

Verify T**2 = lambda0 * T

print("\nT**2 - lambda0T =") print(simplify(P2 - lambda0T))

General gamma_k: Tk = lambda0(k-1) * T

So gamma_k = lambda0**(k-1)

Part II: distribution of X_m given not terminated before m (m >= 2)

Initial distribution of X1

pi1 = Matrix([[Rational(2,3), Rational(1,3)]]) # row vector

Compute pi1*T and normalize to check distribution for m=2

pi2_unnorm = pi1 * T # this is unnormalized wrt survival

Condition on survival before time 2: divide by sum of entries

total2 = (pi2_unnorm * Matrix([[1],[1]]))[0] pi2_cond = pi2_unnorm / total2 print("\nConditional distribution at m=2 (should be 2/3,1/3):") print(pi2_cond.simplify())

Show that for general m>=2, conditional distribution remains [2/3,1/3]

pi_m_unnorm = pi1 * T**(m-1) = lambda0**(m-2) * pi1*T

After normalization, lambda0 cancels and we get same as for m=2 implicitly.

Part III: length ℓ distribution

r = termination prob per step given survival distribution [2/3,1/3]

r = Rational(2,3)*p + Rational(1,3)*q lambda0_check = 1 - r print("\nr (termination prob per step) =", r) print("1 - r =", simplify(1 - r), "should equal lambda0:", simplify(lambda0 - (1-r)))

P(ℓ >= m) = lambda0**(m-1)

So ℓ ~ geometric with parameter r, support {1,2,...}: P(ℓ=m) = r * (1-r)**(m-1)

E[ℓ] and Var[ℓ] for this geometric:

E_l = 1/r Var_l = (1-r)/r**2 print("\nE[l] =", E_l) print("Var[l] =", Var_l)

Part IV: α = P(X_n=0 | X_{n+k}=1)

Use n=1 (stationary-like), Bayes with P_k = gamma_k P1

gamma_k = lambda0**(k-1)

gamma_k = lambda0**(k-1)

P_k elements:

P_k_01 = gamma_k * P1[0,1] # (0,1) P_k_11 = gamma_k * P1[1,1] # (1,1)

P(X1=0) and P(X1=1)

P_X1_0 = Rational(2,3) P_X1_1 = Rational(1,3)

P(X_{1+k}=1)

P_Xkp1_1 = P_X1_0P_k_01 + P_X1_1P_k_11 P_Xkp1_1_simplified = simplify(P_Xkp1_1) print("\nP(X_{1+k}=1) general =", P_Xkp1_1_simplified)

Bayes for alpha:

alpha_general = simplify(P_k_01 * P_X1_0 / P_Xkp1_1_simplified) print("\nAlpha general =", alpha_general)

Simplify alpha more:

alpha_simplified = simplify(alpha_general) print("Alpha simplified =", alpha_simplified)

Now plug in p = 1/2, q = 1/3 for final quantities in part V

p_val = Rational(1,2) q_val = Rational(1,3)

Numeric r, lambda0, alpha, beta, sigma^2, lambda (gamma_2)

r_val = r.subs({p: p_val, q: q_val}) lambda0_val = lambda0.subs({p: p_val, q: q_val}) alpha_val = alpha_simplified.subs({p: p_val, q: q_val}) E_l_val = simplify(E_l.subs({p: p_val, q: q_val})) Var_l_val = simplify(Var_l.subs({p: p_val, q: q_val}))

gamma2_val = lambda0_val # since gamma_2 = lambda0^(2-1) = lambda0

print("\nFor p=1/2, q=1/3:") print("r =", r_val) print("lambda0 =", lambda0_val) print("alpha =", alpha_val) print("E[l] (beta) =", E_l_val) print("Var[l] (sigma^2) =", Var_l_val) print("lambda (gamma_2) =", gamma2_val)

Compute K = 13320(alpha*beta + sigma^2 / lambda) + 7

beta_val = E_l_val sigma2_val = Var_l_val lam_val = gamma2_val

K = 13320(alpha_val*beta_val + sigma2_val/lam_val) + 7 K_simplified = simplify(K) print("\nK simplified =", K_simplified) print("K as integer =", int(K_simplified)) [/PYTHON]

Tool Output
[PYTHON OUTPUT] P1 = Matrix([[2/3 - 2*p/3, 1/3 - p/3], [2/3 - 2*q/3, 1/3 - q/3]]) P2 = Matrix([[4*p**2/9 + 2*p*q/9 - 10*p/9 - 2*q/9 + 2/3, 2*p**2/9 + p*q/9 - 5*p/9 - q/9 + 1/3], [4*p*q/9 - 4*p/9 + 2*q**2/9 - 8*q/9 + 2/3, 2*p*q/9 - 2*p/9 + q**2/9 - 4*q/9 + 1/3]]) P3 = Matrix([[-8*p**3/27 - 8*p**2*q/27 + 32*p**2/27 - 2*p*q**2/27 + 20*p*q/27 - 14*p/9 + 2*q**2/27 - 4*q/9 + 2/3, -4*p**3/27 - 4*p**2*q/27 + 16*p**2/27 - p*q**2/27 + 10*p*q/27 - 7*p/9 + q**2/27 - 2*q/9 + 1/3], [-8*p**2*q/27 + 8*p**2/27 - 8*p*q**2/27 + 32*p*q/27 - 8*p/9 - 2*q**3/27 + 14*q**2/27 - 10*q/9 + 2/3, -4*p**2*q/27 + 4*p**2/27 - 4*p*q**2/27 + 16*p*q/27 - 4*p/9 - q**3/27 + 7*q**2/27 - 5*q/9 + 1/3]]) lambda0 = -2*p/3 - q/3 + 1 T**2 - lambda0*T = Matrix([[0, 0], [0, 0]]) Conditional distribution at m=2 (should be 2/3,1/3): r (termination prob per step) = 2*p/3 + q/3 1 - r = -2*p/3 - q/3 + 1 should equal lambda0: 0 E[l] = 1/(2*p/3 + q/3) Var[l] = (-2*p/3 - q/3 + 1)/(2*p/3 + q/3)**2 P(X_{1+k}=1) general = 3**(-k - 1)*(-2*p - q + 3)**k Alpha general = 2*(1 - p)/(-2*p - q + 3) Alpha simplified = 2*(p - 1)/(2*p + q - 3) For p=1/2, q=1/3: r = 4/9 lambda0 = 5/9 alpha = 3/5 E[l] (beta) = 9/4 Var[l] (sigma^2) = 45/16 lambda (gamma_2) = 5/9 K simplified = 26683 K as integer = 26683 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Using the validated Python results, the computed value of (\mathcal{K}) is 26683. [ \boxed{26683} ]

Final Model Output
26683

Comparative Analysis (P5) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
467.8
Llama-VARCO-8B-Instruct
340.9
Solar-Pro-2 (31B)(high)
321.5
Deepseek-V3.2
272.4
Gemini-3-Pro-Preview
246.2
A.X-4.0 (72B)
191.5
Grok-4.1-fast
53.5
Claude-Opus-4.5
42.6
EXAONE-4.0.1-32B (high)
20.3
HCX-007(high)
18.8

Avg Token Usage

Solar-Pro-2 (31B)(high)
23391.0
A.X-4.0 (72B)
20243.0
GPT-5.1 (high)
19161.0
Deepseek-V3.2
16929.0
Llama-VARCO-8B-Instruct
16067.0
Claude-Opus-4.5
14573.0
Gemini-3-Pro-Preview
14044.0
Grok-4.1-fast
13647.0
EXAONE-4.0.1-32B (high)
6754.0
HCX-007(high)
5076.0