Problem Analysis #35

7.11s
3,014 toks
Problem Statement

A population is normally distributed with mean mm and standard deviation 55. From this population, a random sample of size 3636 is taken, and a 99%99\% confidence interval for the population mean mm is constructed using the sample mean. The resulting confidence interval is 1.2 $$\leq$$ m $$\leq$$ a. Find the value of aa. (Here, ZZ denotes a standard normal random variable, and use P(Z2.58)=0.99\text{P}(|Z| \leq 2.58) = 0.99.) [3 points]Compute 10a10a.\

Ground Truth
55
Execution Trace
Reasoning Process

[THOUGHT] For a 99% z-interval with known population standard deviation, the confidence interval is [ \bar x \pm z_{0.995}\cdot \frac{\sigma}{\sqrt{n}}. ] Given the lower endpoint is 1.2, we have (\bar x - \text{ME}=1.2), so (\bar x=1.2+\text{ME}). Then the upper endpoint is (a=\bar x+\text{ME}=1.2+2\text{ME}). I will compute (\text{ME}=2.58\cdot 5/\sqrt{36}) and then (10a). [/THOUGHT] [PYTHON] import math sigma = 5 n = 36 z = 2.58 ME = z * sigma / math.sqrt(n) a = 1.2 + 2ME print("ME =", ME) print("a =", a) print("10a =", 10a) [/PYTHON][THOUGHT] For a 99% z-interval with known population standard deviation, the confidence interval is [ \bar x \pm z_{0.995}\cdot \frac{\sigma}{\sqrt{n}}. ] Given the lower endpoint is 1.2, we have (\bar x - \text{ME}=1.2), so (\bar x=1.2+\text{ME}). Then the upper endpoint is (a=\bar x+\text{ME}=1.2+2\text{ME}). I will compute (\text{ME}=2.58\cdot 5/\sqrt{36}) and then (10a). [/THOUGHT] [PYTHON] import math sigma = 5 n = 36 z = 2.58 ME = z * sigma / math.sqrt(n) a = 1.2 + 2ME print("ME =", ME) print("a =", a) print("10a =", 10a) [/PYTHON]

Tool Output
[PYTHON OUTPUT] ME = 2.15 a = 5.5 10a = 55.0 [/PYTHON OUTPUT] [PYTHON OUTPUT] ME = 2.15 a = 5.5 10a = 55.0 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Using the computed margin of error (2.15), the upper endpoint is (a=5.5), so (10a=55). \boxed{55}

Final Model Output
55

Comparative Analysis (P35) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
636.4
K-EXAONE-236B-A23B
109.6
Llama-VARCO-8B-Instruct
80.1
HCX-007(high)
49.6
Deepseek-V3.2
47.8
Kanana-2-30B-Thinking
46.1
Gemini-3-Pro-Preview
24.4
Kanana-2-30B-Thinking-2601
22.1
Solar-Pro-2 (31B)(high)
16.4
Solar-Open-100B
14.7
Claude-Opus-4.5
13.8
A.X-4.0 (72B)
13.8
Grok-4.1-fast
10.6
GPT-5.1 (high)
7.8
GPT-5.2 (high)
7.1
K-EXAONE-236B-A23B
6.3
axk1
5.3

Avg Token Usage

K-EXAONE-236B-A23B
12258.7
Kanana-2-30B-Thinking
9114.0
Kanana-2-30B-Thinking-2601
6663.5
Llama-VARCO-8B-Instruct
6041.0
HCX-007(high)
5122.0
Gemini-3-Pro-Preview
4633.0
Solar-Pro-2 (31B)(high)
4521.0
Solar-Open-100B
4423.0
Grok-4.1-fast
4352.0
A.X-4.0 (72B)
3481.0
Claude-Opus-4.5
3452.0
GPT-5.2 (high)
3014.0
K-EXAONE-236B-A23B
2962.0
Deepseek-V3.2
2931.0
axk1
2540.0
GPT-5.1 (high)
2481.0
EXAONE-4.0.1-32B (high)
1752.0