Problem Analysis #4

49.67s
7,126 toks
Problem Statement

Consider a function f(t)f(t) of a real variable tt, where f(t)|f(t)| and f(t)2|f(t)|^2 are integrable. Let F(ω)=F[f(t)]F(\omega) = \mathcal{F}[f(t)] denote the Fourier transform of f(t)f(t):F(ω)=F[f(t)]=f(t)eiωtdt,F(\omega) = \mathcal{F}[f(t)]= \int_{-\infty}^{\infty} f(t)\,e^{-i\omega t}\,dt,where ω\omega is a real number and ii is the imaginary unit. Assume the following identity holds:F(ω)2dω=2πf(t)2dt.\int_{-\infty}^{\infty} |F(\omega)|^2\,d\omega= 2\pi \int_{-\infty}^{\infty} |f(t)|^2\,dt.Let Rf(τ)R_f(\tau) denote the autocorrelation function of f(t)f(t):Rf(τ)=f(t)f(tτ)dt,R_f(\tau) = \int_{-\infty}^{\infty} f(t)\,f(t-\tau)\,dt,where τ\tau is a real number.\subsection*{I.}Consider the case where f(t)f(t) is defined byf(t)={cos(at)(tπ2a),0(t>π2a),f(t) =\begin{cases}\cos(at) & (|t| \le \dfrac{\pi}{2a}),\\[1mm]0 & (|t| > \dfrac{\pi}{2a}),\end{cases}where aa is a positive real constant. Find the following:

  • [(1)] The Fourier transform F(ω)F(\omega).

  • [(2)] The autocorrelation function Rf(τ)R_f(\tau).

  • [(3)] The Fourier transform F[Rf(τ)]\mathcal{F}[R_f(\tau)]. \subsection*{II.}Using the results of I, evaluate the following integrals:

  • [(1)] cos2 ⁣(πx2)(x21)2dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^2\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^2}\,dx,

  • [(2)] cos4 ⁣(πx2)(x21)4dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^4\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^4}\,dx. Let AA denote the value obtained in {\rm II(1)}, and let BB denote the value obtained in {\rm II(2)}. In addition, for the case a=1a=1 in I, let F(0)F(0) be the value of the Fourier transform in {\rm I(1)} at ω=0\omega=0.DefineK=37(F(0))4+999(96B16A230A)+123456.\mathcal{K}= 37\bigl(F(0)\bigr)^4+ 999\bigl(96B - 16A^2 - 30A\bigr)+ 123456.Compute the integer K\mathcal{K}.\

Ground Truth
124048
Execution Trace
Reasoning Process

[THOUGHT] Use the given Fourier convention. For a=1 we can compute F(ω) explicitly; then |F(ω)|^2 matches the integrand in II(1) up to a constant, so Parseval gives A. For B, use Wiener–Khinchin: ℱ[R_f]=|F|^2, then Parseval on R_f gives ∫|F|^4 in terms of ∫R_f(τ)^2, which we can compute from an explicit piecewise formula for R_f(τ) (nonzero only for |τ|<π). Finally compute K from A,B and F(0). [/THOUGHT] [PYTHON] import sympy as sp

Symbols

t, w, tau = sp.symbols('t w tau', real=True) pi = sp.pi

Define f(t) for a=1: cos(t) on [-pi/2, pi/2], else 0.

Fourier transform computed analytically:

F = 2sp.cos(piw/2)/(1-w**2) # for all real w, with removable singularities at w=±1 F0 = sp.simplify(F.subs(w, 0))

Part II(1): A from Parseval: integral |F|^2 = 4A

I_f2 = sp.integrate(sp.cos(t)**2, (t, -pi/2, pi/2)) A = sp.simplify((2piI_f2)/4)

Autocorrelation R_f(tau) for 0<=tau<pi: overlap [tau-pi/2, pi/2]

R_pos = sp.simplify(sp.integrate(sp.cos(t)*sp.cos(t-tau), (t, tau-pi/2, pi/2)))

Extend even and zero outside |tau|<pi:

We'll compute integral of R^2 directly using symmetry.

R2_int = sp.simplify(2*sp.integrate(sp.simplify(R_pos**2), (tau, 0, pi)))

Parseval on R: ∫|F|^4 dw = 2π ∫ R^2 dτ

F4_int = sp.simplify(2piR2_int)

B relates: |F|^4 = 16 * cos^4(pi w/2)/(w^2-1)^4, so B = (1/16)*∫|F|^4

B = sp.simplify(F4_int/16)

Compute K

K_expr = sp.simplify(37F0**4 + 999(96B - 16A**2 - 30*A) + 123456)

print("F(w) =", sp.simplify(F)) print("F(0) =", F0) print("Integral of cos^2 on [-pi/2,pi/2] =", I_f2) print("A =", A) print("R_pos(tau) =", R_pos) print("Integral R^2 =", R2_int) print("B =", B) print("K_expr simplified =", K_expr) print("K as integer? =", sp.nsimplify(K_expr)) print("K numeric approx =", float(sp.N(K_expr, 30))) print("K exact rational form =", sp.together(K_expr)) [/PYTHON]

Tool Output
[PYTHON OUTPUT] F(w) = -2*cos(pi*w/2)/(w**2 - 1) F(0) = 2 Integral of cos^2 on [-pi/2,pi/2] = pi/2 A = pi**2/4 R_pos(tau) = -tau*cos(tau)/2 + sin(tau)/2 + pi*cos(tau)/2 Integral R^2 = pi*(15 + 2*pi**2)/24 B = pi**2*(15 + 2*pi**2)/192 K_expr simplified = 124048 K as integer? = 124048 K numeric approx = 124048.0 K exact rational form = 124048 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Using the verified computed values (F(0)=2), (A=\pi^2/4), (B=\pi^2(15+2\pi^2)/192), the expression for (\mathcal{K}) simplifies exactly to the integer below. [\boxed{124048}]

Final Model Output
124048

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

K-EXAONE-236B-A23B
737.3
GPT-5.1 (high)
414.5
Gemini-3-Pro-Preview
235.9
Solar-Open-100B
216.1
Kanana-2-30B-Thinking
184.7
Deepseek-V3.2
172.0
Solar-Pro-2 (31B)(high)
168.4
Llama-VARCO-8B-Instruct
128.4
A.X-4.0 (72B)
124.6
Kanana-2-30B-Thinking-2601
112.3
K-EXAONE-236B-A23B
106.0
Grok-4.1-fast
63.1
Claude-Opus-4.5
52.5
GPT-5.2 (high)
49.7
HCX-007(high)
32.4
axk1
13.5
EXAONE-4.0.1-32B (high)
9.1

Avg Token Usage

K-EXAONE-236B-A23B
84389.0
Solar-Open-100B
36862.0
Kanana-2-30B-Thinking
27059.0
Kanana-2-30B-Thinking-2601
25594.5
Solar-Pro-2 (31B)(high)
22565.0
GPT-5.1 (high)
18561.0
Deepseek-V3.2
17612.0
K-EXAONE-236B-A23B
16134.0
Grok-4.1-fast
13781.0
Gemini-3-Pro-Preview
12183.0
Claude-Opus-4.5
9408.0
A.X-4.0 (72B)
9126.0
Llama-VARCO-8B-Instruct
8388.0
GPT-5.2 (high)
7126.0
EXAONE-4.0.1-32B (high)
5657.0
HCX-007(high)
5162.0
axk1
4015.0