Consider the following procedure that generates a sequence of random variables that take the value or . For an integer , we denote the -th random variable of a sequence generated by the procedure as .
-
becomes with probability and with probability .
-
For integers in order, the following is repeated until the procedure terminates:
-
The procedure terminates with probability () if , and with probability () if . Here and are fixed constants.
-
If the procedure does not terminate at step , then becomes with probability and with probability .
When the procedure terminates at , a sequence of length , composed of random variables , is generated, and no further random variables are generated.\subsection*{I.}For an integer , consider the matrix
-
[(1)] Express and in terms of and .
-
[(2)] Express using .
-
[(3)] The matrix can be expressed in the form for a real number . Find . \subsection*{II.}For an integer , find the respective probabilities that and , given that the procedure does not terminate before .\subsection*{III.}Let be the length of the sequence generated by the procedure. Find the expected value and the variance of . If necessary, you may usefor a real number with .\subsection*{IV.}For an integer , find the probability .\subsection*{V. Final quantity}In this part, assume and .
-
Let be the probability in {\rm IV} for these values of and :
-
Let be the expected value of obtained in {\rm III}, and let be the variance of in {\rm III}.
-
In {\rm I(3)}, can be written as . Let for and . DefineCompute the integer .\
To solve the given problem, we will break it down into manageable parts and use the provided information to find the final answer.
Part I: Transition Matrices
-
Matrix ( P_1 ): The transition matrix ( P_1 ) is given by: [ P_1 = \begin{pmatrix} \Pr(X_{n+1} = 0 \mid X_n = 0) & \Pr(X_{n+1} = 1 \mid X_n = 0) \ \Pr(X_{n+1} = 0 \mid X_n = 1) & \Pr(X_{n+1} = 1 \mid X_n = 1) \end{pmatrix} ] Given the transition probabilities: [ \Pr(X_{n+1} = 0 \mid X_n = 0) = \frac{2}{3}(1 - p), \quad \Pr(X_{n+1} = 1 \mid X_n = 0) = \frac{1}{3}(1 - p) ] [ \Pr(X_{n+1} = 0 \mid X_n = 1) = \frac{2}{3}(1 - q), \quad \Pr(X_{n+1} = 1 \mid X_n = 1) = \frac{1}{3}(1 - q) ] Therefore, [ P_1 = \begin{pmatrix} \frac{2}{3}(1 - p) & \frac{1}{3}(1 - p) \ \frac{2}{3}(1 - q) & \frac{1}{3}(1 - q) \end{pmatrix} ]
-
Matrix ( P_2 ): The matrix ( P_2 ) is given by: [ P_2 = P_1 \cdot P_1 ] Calculating ( P_2 ): [ P_2 = \begin{pmatrix} \frac{2}{3}(1 - p) & \frac{1}{3}(1 - p) \ \frac{2}{3}(1 - q) & \frac{1}{3}(1 - q) \end{pmatrix} \cdot \begin{pmatrix} \frac{2}{3}(1 - p) & \frac{1}{3}(1 - p) \ \frac{2}{3}(1 - q) & \frac{1}{3}(1 - q) \end{pmatrix} ] [ P_2 = \begin{pmatrix} \frac{2}{3}(1 - p) \cdot \frac{2}{3}(1 - p) + \frac{1}{3}(1 - p) \cdot \frac{2}{3}(1 - q) & \frac{2}{3}(1 - p) \cdot \frac{1}{3}(1 - p) + \frac{1}{3}(1 - p) \cdot \frac{1}{3}(1 - q) \ \frac{2}{3}(1 - q) \cdot \frac{2}{3}(1 - p) + \frac{1}{3}(1 - q) \cdot \frac{2}{3}(1 - q) & \frac{2}{3}(1 - q) \cdot \frac{1}{3}(1 - p) + \frac{1}{3}(1 - q) \cdot \frac{1}{3}(1 - q) \end{pmatrix} ] Simplifying: [ P_2 = \begin{pmatrix} \frac{4}{9}(1 - p)^2 + \frac{2}{9}(1 - p)(1 - q) & \frac{2}{9}(1 - p)^2 + \frac{1}{9}(1 - p)(1 - q) \ \frac{4}{9}(1 - q)(1 - p) + \frac{2}{9}(1 - q)^2 & \frac{2}{9}(1 - q)(1 - p) + \frac{1}{9}(1 - q)^2 \end{pmatrix} ] [ P_2 = \begin{pmatrix} \frac{2(1 - p) + (1 - q)}{3} \cdot \frac{2}{3}(1 - p) & \frac{2(1 - p) + (1 - q)}{3} \cdot \frac{1}{3}(1 - p) \ \frac{2(1 - p) + (1 - q)}{3} \cdot \frac{2}{3}(1 - q) & \frac{2(1 - p) + (1 - q)}{3} \cdot \frac{1}{3}(1 - q) \end{pmatrix} ] [ P_2 = \gamma_2 P_1 \quad \text{where} \quad \gamma_2 = \frac{2(1 - p) + (1 - q)}{3} ]
-
General Form ( P_k ): By induction, we can show that: [ P_k = \gamma_k P_1 \quad \text{where} \quad \gamma_k = \left( \frac{2(1 - p) + (1 - q)}{3} \right)^{k-1} ]
Part II: Probabilities Given Survival
Given that the procedure does not terminate before ( n = m ), the distribution of ( X_m ) is: [ \Pr(X_m = 0 \mid \text{survived up to } m-1) = \frac{2}{3}, \quad \Pr(X_m = 1 \mid \text{survived up to } m-1) = \frac{1}{3} ]
Part III: Expected Value and Variance of ( \ell )
-
Expected Value ( \beta ): The expected value ( \beta ) is given by: [ \beta = \frac{3}{q + 2p} ] For ( p = \frac{1}{2} ) and ( q = \frac{1}{3} ): [ \beta = \frac{3}{\frac{1}{3} + 2 \cdot \frac{1}{2}} = \frac{3}{\frac{1}{3} + 1} = \frac{3}{\frac{4}{3}} = \frac{9}{4} ]
-
Variance ( \sigma^2 ): The variance ( \sigma^2 ) is given by: [ \sigma^2 = \frac{3(3 + q + 2p)}{(q + 2p)^3} ] For ( p = \frac{1}{2} ) and ( q = \frac{1}{3} ): [ \sigma^2 = \frac{3(3 + \frac{1}{3} + 2 \cdot \frac{1}{2})}{(\frac{1}{3} + 1)^3} = \frac{3(3 + \frac{1}{3} + 1)}{(\frac{4}{3})^3} = \frac{3 \cdot \frac{13}{3}}{\frac{64}{27}} = \frac{13}{\frac{64}{27}} = \frac{351}{64} ]
Part IV: Conditional Probability ( \alpha )
The conditional probability ( \alpha ) is given by: [ \alpha = \frac{2(1 - p)}{2(1 - p) + (1 - q)} ] For ( p = \frac{1}{2} ) and ( q = \frac{1}{3} ): [ \alpha = \frac{2(1 - \frac{1}{2})}{2(1 - \frac{1}{2}) + (1 - \frac{1}{3})} = \frac{2 \cdot \frac{1}{2}}{2 \cdot \frac{1}{2} + \frac{2}{3}} = \frac{1}{1 + \frac{2}{3}} = \frac{1}{\frac{5}{3}} = \frac{3}{5} ]
Part V: Final Calculation
-
Scalar ( \lambda ): [ \lambda = \gamma_2 = \frac{2(1 - p) + (1 - q)}{3} ] For ( p = \frac{1}{2} ) and ( q = \frac{1}{3} ): [ \lambda = \frac{2(1 - \frac{1}{2}) + (1 - \frac{1}{3})}{3} = \frac{2 \cdot \frac{1}{2} + \frac{2}{3}}{3} = \frac{1 + \frac{2}{3}}{3} = \frac{\frac{5}{3}}{3} = \frac{5}{9} ]
-
Final Quantity ( \mathcal{K} ): [ \mathcal{K} = 13 \cdot 320 \left( \alpha \beta + \frac{\sigma^2}{\lambda} \right) + 7 ] Substituting the values: [ \alpha \beta = \frac{3}{5} \cdot \frac{9}{4} = \frac{27}{20} ] [ \frac{\sigma^2}{\lambda} = \frac{\frac{351}{64}}{\frac{5}{9}} = \frac{351}{64} \cdot \frac{9}{5} = \frac{3159}{320} ] [ \alpha \beta + \frac{\sigma^2}{\lambda} = \frac{27}{20} + \frac{3159}{320} = \frac{432}{320} + \frac{3159}{320} = \frac{3591}{320} ] [ \mathcal{K} = 13 \cdot 320 \cdot \frac{3591}{320} + 7 = 13 \cdot 3591 + 7 = 46683 + 7 = 46690 ]
Thus, the final answer is: [ \boxed{46690} ]