Problem Analysis #2

89.63s
14,348 toks
Problem Statement

In the following, zz is a complex number and ii is the imaginary unit. Consider the complex functionf(z)=cotzz2,f(z) = \frac{\cot z}{z^2},where cotz=1tanz\cot z = \dfrac{1}{\tan z}. For a positive integer mm, defineDm=limz0dmdzm(zcotz).D_m = \lim_{z\to 0} \frac{d^m}{dz^m}(z \cot z).If necessary, you may use D2=23D_2 = -\dfrac{2}{3} andlimznπznπsinz=(1)nfor any integer n.\lim_{z\to n\pi} \frac{z - n\pi}{\sin z} = (-1)^n\quad\text{for any integer } n.

  • [I.] Find all poles of f(z)f(z). Also, find the order of each pole.
  • [II.] Find the residue of each pole found in I.
  • [III.] Let MM be a positive integer and set R=π(2M+1)R = \pi(2M+1). For each real parameter tt with R2tR2-\dfrac{R}{2} \le t \le \dfrac{R}{2}, consider the four line segments \begin{align*} C_1:\ & z(t) = \frac{R}{2} + it, \\ C_2:\ & z(t) = -t + i\frac{R}{2}, \\ C_3:\ & z(t) = -\frac{R}{2} - it, \\ C_4:\ & z(t) = t - i\frac{R}{2}. \end{align*} These four oriented segments form the boundary of a square centered at the origin, traversed counterclockwise. For each complex integral Ik=Ckf(z)dzI_k = \displaystyle\int_{C_k} f(z)\,dz along CkC_k (k=1,2,3,4k = 1,2,3,4), find limMIk\displaystyle\lim_{M\to\infty} I_k.
  • [IV.] Let CC be the closed loop composed of the four line segments C1,C2,C3C_1, C_2, C_3, and C4C_4 in III. By applying the residue theorem to the complex integral I=Cf(z)dz, I = \oint_C f(z)\,dz, find the value of the infinite series n=11n2. \sum_{n=1}^{\infty} \frac{1}{n^2}.
  • [V.] Now replace f(z)f(z) by the complex function g(z)=cotzz2N, g(z) = \frac{\cot z}{z^{2N}}, where NN is a positive integer. By following the same contour method as in I–IV, express the infinite series n=11n2N \sum_{n=1}^{\infty} \frac{1}{n^{2N}} in terms of DmD_m. Finally, let pp be the order of the pole of f(z)f(z) at z=0z=0 (from I), and let rr be the residue of f(z)f(z) at z=0z=0 (from II). Let S2S_2 denote the value of n=11n2\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2} obtained in IV. From the expression in V, let TT be the value of n=11n2\displaystyle \sum_{n=1}^{\infty} \frac{1}{n^2} obtained by setting N=1N=1 in your general formula.Compute the integerK=999(p21)(3r)(D2)S2T.\mathcal{K}= 999\,(p^2 - 1)\,(-3r)\,(-D_2)\,\frac{S_2}{T}.\
Ground Truth
5328
Execution Trace
Reasoning Process

[THOUGHT] To verify D_2 and the residue, I will use sympy to compute the second derivative of z * cot(z) at z=0 or the series expansion. [/THOUGHT] [PYTHON] import sympy as sp z = sp.symbols('z') f = z * sp.cot(z) series = sp.series(f, z, 0, 5) print(series)

deriv2 = sp.diff(f, z, 2).limit(z, 0) print(deriv2) [/PYTHON]

Tool Output
[PYTHON OUTPUT] 1 - z**2/3 - z**4/45 + O(z**5) -2/3 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The poles of (f(z)) are at (z = 0) (order 3) and (z = n\pi) for nonzero integers (n) (simple poles). The residue at (z = 0) is (r = -\frac{1}{3}). Thus, (p = 3). Also, (D_2 = -\frac{2}{3}). In IV, (S_2 = \frac{\pi^2}{6}). In V, for (N=1), (T = -\frac{\pi^2}{2} \cdot \frac{D_2}{2!} = \frac{\pi^2}{6}). Then (\mathcal{K} = 999 \cdot (3^2 - 1) \cdot (-3 \cdot -\frac{1}{3}) \cdot (-\frac{2}{3}) \cdot \frac{S_2}{T} = 999 \cdot 8 \cdot 1 \cdot \frac{2}{3} \cdot 1 = 5328). [/THOUGHT] \boxed{5328}

Explanation

The reasoning proceeds through the problem's parts to compute (\mathcal{K}).

For part I, (f(z) = \frac{\cot z}{z^2}) has poles where (\sin z = 0), so at (z = n\pi) for integer (n). At (z = n\pi) with (n \neq 0), (\cot z) has a simple pole with residue 1, and (z^2 \neq 0), yielding simple poles. At (z = 0), the Laurent series of (\cot z \approx \frac{1}{z} - \frac{z}{3}) gives (f(z) \approx \frac{1}{z^3} - \frac{1}{3z}), confirming a pole of order 3. Thus, (p = 3).

For part II, the residue at (z = 0) is the coefficient of (z^{-1}) in the Laurent series of (f(z)), which is (-\frac{1}{3}), so (r = -\frac{1}{3}). At (z = n\pi) ((n \neq 0)), the residue is (\frac{1}{(n\pi)^2}).

Parts III and IV use the square contour (C) with side length (R = \pi(2M+1)). As (M \to \infty), the integrals over each (C_k) vanish due to the decay of (|f(z)|) on the boundaries. By the residue theorem, (\oint_C f(z) , dz = 2\pi i \sum \text{residues inside } C). The poles inside are at (z = 0) and (z = n\pi) for (|n| \leq M), (n \neq 0). Thus, (0 = 2\pi i \left[ -\frac{1}{3} + 2 \sum_{n=1}^M \frac{1}{(n\pi)^2} \right]) in the limit, yielding (\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}), so (S_2 = \frac{\pi^2}{6}).

For part V, (g(z) = \frac{\cot z}{z^{2N}}) has residue at (z = 0) given by the coefficient of (z^{-1}) in its Laurent series. Let (h(z) = z \cot z = \sum_{m=0}^\infty \frac{D_m}{m!} z^m). Then (g(z) = \frac{h(z)}{z^{2N+1}}), and the (z^{-1}) term occurs when (m - 2N - 1 = -1), so (m = 2N), giving (\operatorname{Res}(g, 0) = \frac{D_{2N}}{(2N)!}). The contour argument yields (\sum_{n=1}^\infty \frac{1}{n^{2N}} = -\frac{\pi^{2N}}{2} \cdot \frac{D_{2N}}{(2N)!}). For (N=1), (T = -\frac{\pi^2}{2} \cdot \frac{D_2}{2!} = -\frac{\pi^2}{2} \cdot \frac{-2/3}{2} = \frac{\pi^2}{6}).

Finally, substitute into (\mathcal{K} = 999 (p^2 - 1) (-3r) (-D_2) \frac{S_2}{T}): (p^2 - 1 = 9 - 1 = 8), (-3r = -3 \cdot (-\frac{1}{3}) = 1), (-D_2 = - (-\frac{2}{3}) = \frac{2}{3}), (\frac{S_2}{T} = 1). Thus, (\mathcal{K} = 999 \cdot 8 \cdot 1 \cdot \frac{2}{3} \cdot 1 = 999 \cdot \frac{16}{3} = 333 \cdot 16 = 5328).

Final Model Output
5328

Comparative Analysis (P2) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
149.6
Gemini-3-Pro-Preview
144.7
Grok-4.1-fast
89.6
Solar-Pro-2 (31B)(high)
71.1
GPT-5.1 (high)
55.4
Deepseek-V3.2
48.1
A.X-4.0 (72B)
43.9
Claude-Opus-4.5
33.5
HCX-007(high)
32.2
EXAONE-4.0.1-32B (high)
15.1

Avg Token Usage

Grok-4.1-fast
14348.0
Solar-Pro-2 (31B)(high)
13266.0
Llama-VARCO-8B-Instruct
12669.0
Gemini-3-Pro-Preview
10743.0
Deepseek-V3.2
8345.0
Claude-Opus-4.5
8331.0
EXAONE-4.0.1-32B (high)
8303.0
GPT-5.1 (high)
5813.0
HCX-007(high)
5438.0
A.X-4.0 (72B)
3825.0