Problem Analysis #23

51.59s
10,780 toks
Problem Statement

Consider the ellipsex2a2+y2b2=1(0<b<a),\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad (0 < b < a),and suppose that one focus of this ellipse coincides with the focus of the parabolay2=4px(p>0).y^2 = 4px \qquad (p > 0).Let the two intersection points of the parabola and the ellipse be denoted byP1\mathrm{P}_1 and P2\mathrm{P}_2.Let AA be the intersection point of the tangent line to the parabola at P1\mathrm{P}_1and the tangent line to the parabola at P2\mathrm{P}_2.Given that the angle P1AP2=60\angle \mathrm{P}_1 A \mathrm{P}_2 = 60^\circ, and that for any real number tt,t\lfloor t \rfloor denotes the greatest integer not exceeding tt, determine the value ofa3p3.\left\lfloor \frac{a^3}{p^3} \right\rfloor .oindent

Ground Truth
100
Execution Trace
Reasoning Process

[THOUGHT] The parabola is (y^2 = 4px) with focus at ((p, 0)). The ellipse has foci at ((\pm c, 0)) where (c = \sqrt{a^2 - b^2}), and one focus coincides with ((p, 0)), so (c = p) and (b^2 = a^2 - p^2).

The intersection points satisfy (\frac{x^2}{a^2} + \frac{4px}{b^2} = 1), a quadratic in (x) with one positive root (x_0 > 0). The points are (P_1(x_0, \sqrt{4px_0})) and (P_2(x_0, -\sqrt{4px_0})), corresponding to parameters (t) and (-t) on the parabola, with (x_0 = p t^2).

The tangents at (t) and (-t) intersect at (A = (-p t^2, 0)).

Vectors (\overrightarrow{AP_1} = 2pt (t, 1)), (\overrightarrow{AP_2} = 2pt (t, -1)). The angle (\phi = \angle P_1 A P_2) satisfies (\cos \phi = \frac{t^2 - 1}{t^2 + 1}). Given (\phi = 60^\circ), (\cos 60^\circ = 0.5), so (\frac{t^2 - 1}{t^2 + 1} = \frac{1}{2}), yielding (t^2 = 3), (t = \sqrt{3}) (since (t > 0)).

Substitute into ellipse: (\frac{(p \cdot 3)^2}{a^2} + \frac{(2p\sqrt{3})^2}{b^2} = 1), so (\frac{9p^2}{a^2} + \frac{12p^2}{b^2} = 1).

Let (r = a^2 / p^2 > 1), then (b^2 / p^2 = r - 1). The equation becomes (\frac{9}{r} + \frac{12}{r-1} = 1). Solving: (9(r-1) + 12r = r(r-1)), (21r - 9 = r^2 - r), (r^2 - 22r + 9 = 0), (r = 11 + 4\sqrt{7}) (positive root).

Then (\frac{a^3}{p^3} = r^{3/2}). Compute numerically to find floor. [/THOUGHT] [PYTHON] import math

sqrt7 = math.sqrt(7) r = 11 + 4 * sqrt7 val = r ** 1.5 print(val) print(math.floor(val)) [/PYTHON]

Tool Output
[PYTHON OUTPUT] 100.26927491022722 100 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output gives r^{3/2} ≈ 100.269, so floor is 100. [/THOUGHT] \boxed{100}

Explanation

The reasoning follows a logical sequence to derive the value of (\left\lfloor \frac{a^3

Final Model Output
100

Comparative Analysis (P23) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
139.5
A.X-4.0 (72B)
92.0
Gemini-3-Pro-Preview
88.2
Deepseek-V3.2
69.9
Solar-Pro-2 (31B)(high)
69.5
Grok-4.1-fast
51.6
GPT-5.1 (high)
50.4
Claude-Opus-4.5
24.1
HCX-007(high)
23.8
EXAONE-4.0.1-32B (high)
9.3

Avg Token Usage

Gemini-3-Pro-Preview
14819.0
Solar-Pro-2 (31B)(high)
11576.0
Deepseek-V3.2
11518.0
Grok-4.1-fast
10780.0
Claude-Opus-4.5
6166.0
EXAONE-4.0.1-32B (high)
5468.0
GPT-5.1 (high)
5435.0
Llama-VARCO-8B-Instruct
3993.0
HCX-007(high)
3875.0
A.X-4.0 (72B)
2719.0