Problem Analysis #3

142.69s
21,249 toks
Problem Statement

In the three-dimensional orthogonal coordinate system xyzxyz, consider the surface SS defined by(x(θ,ϕ)y(θ,ϕ)z(θ,ϕ))=(cosθsinθ0sinθcosθ0001)(cosϕ+20sinϕ),\begin{pmatrix}x(\theta, \phi) \\y(\theta, \phi) \\z(\theta, \phi)\end{pmatrix}=\begin{pmatrix}\cos\theta & -\sin\theta & 0 \\\sin\theta & \cos\theta & 0 \\0 & 0 & 1\end{pmatrix}\begin{pmatrix}\cos\phi + 2 \\0 \\\sin\phi\end{pmatrix},where θ\theta and ϕ\phi are parameters of the surface SS, and0θ<2π,0ϕ<2π.0 \leq \theta < 2\pi,\qquad 0 \leq \phi < 2\pi.Let VV be the region surrounded by the surface SS, and let WW be the region satisfying the inequality x2+y24x^2 + y^2 \leq 4. Answer the following questions for the surface SS.

  • [I.] Find the unit normal vector oriented inward the region VV at the point P=(12120) P = \begin{pmatrix} \dfrac{1}{\sqrt{2}} \\ \dfrac{1}{\sqrt{2}} \\ 0 \end{pmatrix} on the surface SS.
  • [II.] Find the area of the portion of the surface SS included in the region WW.
  • [III.] Find the volume of the overlapping region VWV \cap W.
  • [IV.] Consider the curve CC on the surface SS defined by setting θ=ϕ\theta = \phi in the parametrization of SS. Find the curvature of the curve CC at the point Q=(021) Q = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} on the curve CC. Note that, in general, given a three-dimensional curve defined byc(t)=(x(t)y(t)z(t))c(t) =\begin{pmatrix}x(t) \\y(t) \\z(t)\end{pmatrix}with parameter tt, the curvature κ(t)\kappa(t) of the curve at the point c(t)c(t) is given byκ(t)=dc(t)dt×d2c(t)dt2dc(t)dt3.\kappa(t)= \frac{\left\lVert \dfrac{dc(t)}{dt} \times \dfrac{d^2c(t)}{dt^2}\right\rVert} {\left\lVert \dfrac{dc(t)}{dt}\right\rVert^3}.Let n=(n1,n2,n3)\mathbf{n} = (n_1,n_2,n_3) be the inward unit normal vector at PP obtained in {\rm I}. Let ASA_S be the area obtained in {\rm II}, and let VovV_{\mathrm{ov}} be the overlapping volume VWV\cap W obtained in {\rm III}. Let κQ\kappa_Q be the curvature at QQ obtained in {\rm IV}.DefineK=999123(Vov2πAS4π)(n1+n2)2κQ2  +  7.\mathcal{K}= 999 \cdot 123 \cdot\left(\frac{V_{\mathrm{ov}}}{2\pi}- \frac{A_S}{4\pi}\right)\cdot\frac{(n_1 + n_2)^2}{\kappa_Q^2}\;+\; 7.Compute the integer K\mathcal{K}.\
Ground Truth
249757
Execution Trace
Reasoning Process

[THOUGHT] The surface is a torus with major radius 2, minor radius 1. For part I, at P corresponding to θ=π/4, φ=π, the inward unit normal is (1/√2, 1/√2, 0), so n1 + n2 = √2, (n1 + n2)^2 = 2. For II, A_S = 4π² - 4π. For III, V_ov = 2π² - 4π/3. Then V_ov/(2π) - A_S/(4π) = 1/3. For IV, verify κ_Q at t=π/2 for c(t) = ((2 + cos t) cos t, (2 + cos t) sin t, sin t) using sympy to compute ||c' × c''|| / ||c'||^3, expecting √41 / 5^{3/2}, so κ_Q^2 = 41/125. Then the expression simplifies to 999 * 250 + 7 = 249757. Now verify κ_Q with code. [/THOUGHT] [PYTHON] import sympy as sp

t = sp.symbols('t') alpha = 2 + sp.cos(t) cx = alpha * sp.cos(t) cy = alpha * sp.sin(t) cz = sp.sin(t)

c = sp.Matrix([cx, cy, cz]) c1 = sp.diff(c, t) c2 = sp.diff(c1, t)

t_val = sp.pi / 2 c1_val = c1.subs(t, t_val) c2_val = c2.subs(t, t_val)

cross = c1_val.cross(c2_val) norm_cross = sp.sqrt(cross.dot(cross)) norm_c1 = sp.sqrt(c1_val.dot(c1_val)) kappa = norm_cross / norm_c1**3

print(kappa) print(float(kappa2)) # to check 41/125=0.328 print(kappa2.simplify()) [/PYTHON]

Tool Output
[PYTHON OUTPUT] SyntaxError: invalid decimal literal (<string>, line 24) [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] Fix the SyntaxError by removing comments and the float line. Compute kappa exactly and simplify kappa**2. [/THOUGHT] [PYTHON] import sympy as sp

t = sp.symbols('t') alpha = 2 + sp.cos(t) cx = alpha * sp.cos(t) cy = alpha * sp.sin(t) cz = sp.sin(t)

c = sp.Matrix([cx, cy, cz]) c1 = c.diff(t) c2 = c1.diff(t)

t_val = sp.pi / 2 c1_val = c1.subs(t, t_val) c2_val = c2.subs(t, t_val)

cross = c1_val.cross(c2_val) norm_cross = sp.sqrt(cross.dot(cross)) norm_c1 = sp.sqrt(c1_val.dot(c1_val)) kappa = norm_cross / norm_c1**3

print(kappa) print(kappa.simplify()) print((kappa**2).simplify()) [/PYTHON]

Tool Output
[PYTHON OUTPUT] sqrt(205)/25 sqrt(205)/25 41/125 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The calculations confirm: n=(12,12,0)\mathbf{n} = \left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right), so (n1+n2)2=2(n_1 + n_2)^2 = 2. AS=4π24πA_S = 4\pi^2 - 4\pi. Vov=2π24π3V_{\mathrm{ov}} = 2\pi^2 - \frac{4\pi}{3}. Thus Vov2πAS4π=13\frac{V_{\mathrm{ov}}}{2\pi} - \frac{A_S}{4\pi} = \frac{1}{3}. κQ2=41125\kappa_Q^2 = \frac{41}{125}. Then K=99912313241/125+7=9991231325041+7\mathcal{K} = 999 \cdot 123 \cdot \frac{1}{3} \cdot \frac{2}{41/125} + 7 = 999 \cdot 123 \cdot \frac{1}{3} \cdot \frac{250}{41} + 7. Since 123=341123 = 3 \cdot 41, this simplifies to 3333250+7=999250+7=249750+7=249757333 \cdot 3 \cdot 250 + 7 = 999 \cdot 250 + 7 = 249750 + 7 = 249757. [/THOUGHT] \boxed{249757}

Explanation

The reasoning derives the values for each component of (\mathcal{K}) systematically from the surface parametrization and problem constraints.

For part I, the point (P = \left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right)) corresponds to (\theta = \pi/4), (\phi = \pi). Compute partial derivatives: (\mathbf{r}\theta = \left( -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right)), (\mathbf{r}\phi = (0, 0, -1)). The cross product (\mathbf{r}\theta \times \mathbf{r}\phi = \left( -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right)) has unit length and points outward for the solid torus (V). Thus, the inward unit normal is (\mathbf{n} = \left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \right)), so (n_1 + n_2 = \sqrt{2}) and ((n_1 + n_2)^2 = 2).

For part II, the area element is (|( \mathbf{r}\theta \times \mathbf{r}\phi )| = 2 + \cos \phi). Region (W) requires (\sqrt{x^2 + y^2} = 2 + \cos \phi \leq 2), so (\cos \phi \leq 0) or (\phi \in [\pi/2, 3\pi/2]). Thus, (A_S = \int_0^{2\pi} \int_{\pi/2}^{3\pi/2} (2 + \cos \phi) , d\phi , d\theta = 2\pi \left[ 2\phi + \sin \phi \right]_{\pi/2}^{3\pi/2} = 2\pi (2\pi - 2) = 4\pi^2 - 4\pi).

For part III, volume (V_{\mathrm{ov}}) uses cylindrical coordinates: (V_{\mathrm{ov}} = 4\pi \int_1^2 \rho \sqrt{1 - (\rho - 2)^2} , d\rho). Substitute (u = \rho - 2), yielding (\int_{-1}^0 (u + 2) \sqrt{1 - u^2} , du = -\frac{1}{3} + \frac{\pi}{2}). Thus, (V_{\mathrm{ov}} = 4\pi \left( \frac{\pi}{2} - \frac{1}{3} \right) = 2\pi^2 - \frac{4\pi}{3}).

Then, (\frac{V_{\mathrm{ov}}}{2\pi} = \pi - \frac{2}{3}) and (\frac{A_S}{4\pi} = \pi - 1), so (\frac{V_{\mathrm{ov}}}{2\pi} - \frac{A_S}{4\pi} = \frac{1}{3}).

For part IV, curve (C): (\mathbf{c}(t) = \left( (2 + \cos t) \cos t, (2 + \cos t) \sin t, \sin t \right)). At (Q) ((t = \pi/2)), Python computation gives (\kappa_Q = \sqrt{205}/25), so (\kappa_Q^2 = 41/125).

Substitute into (\mathcal{K}): (999 \cdot 123 \cdot \frac{1}{3} \cdot \frac{2}{41/125} + 7 = 999 \cdot 123 \cdot \frac{1}{3} \cdot \frac{250}{41}). Since (123 = 3 \cdot 41), simplify to (333 \cdot 3 \cdot 250 + 7 = 999 \cdot 250 + 7 = 249750 + 7 = 249757).

Final Model Output
249757

Comparative Analysis (P3) (Average across runs)

Avg Time Taken

Gemini-3-Pro-Preview
343.1
GPT-5.1 (high)
185.0
Deepseek-V3.2
168.5
Grok-4.1-fast
142.7
Solar-Pro-2 (31B)(high)
139.6
Llama-VARCO-8B-Instruct
92.2
A.X-4.0 (72B)
86.0
Claude-Opus-4.5
84.8
HCX-007(high)
31.8
EXAONE-4.0.1-32B (high)
12.4

Avg Token Usage

Solar-Pro-2 (31B)(high)
22878.0
Grok-4.1-fast
21249.0
A.X-4.0 (72B)
19754.0
Claude-Opus-4.5
16732.0
Deepseek-V3.2
15050.0
Gemini-3-Pro-Preview
14578.0
GPT-5.1 (high)
9991.0
HCX-007(high)
9092.0
EXAONE-4.0.1-32B (high)
7591.0
Llama-VARCO-8B-Instruct
6884.0