Problem Analysis #35

10.64s
4,352 toks
Problem Statement

A population is normally distributed with mean mm and standard deviation 55. From this population, a random sample of size 3636 is taken, and a 99%99\% confidence interval for the population mean mm is constructed using the sample mean. The resulting confidence interval is 1.2 $$\leq$$ m $$\leq$$ a. Find the value of aa. (Here, ZZ denotes a standard normal random variable, and use P(Z2.58)=0.99\text{P}(|Z| \leq 2.58) = 0.99.) [3 points]Compute 10a10a.\

Ground Truth
55
Execution Trace
Reasoning Process

[THOUGHT] The 99% confidence interval is (\bar{x} \pm z \frac{\sigma}{\sqrt{n}}), where (z = 2.58), (\sigma = 5), (n = 36).

Standard error SE = 5 / sqrt(36) = 5/6.

Margin of error E = 2.58 * (5/6).

The lower bound is (\bar{x} - E = 1.2), so upper bound (a = \bar{x} + E = 1.2 + 2E).

Compute E exactly, then a, then 10a. [/THOUGHT] [PYTHON] import math

z = 2.58 sigma = 5 n = 36 SE = sigma / math.sqrt(n) E = z * SE a = 1.2 + 2 * E ten_a = 10 * a print(f"E = {E}") print(f"a = {a}") print(f"10a = {ten_a}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] E = 2.1500000000000004 a = 5.500000000000001 10a = 55.00000000000001 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output gives 10a = 55.00000000000001, which is 55. [/THOUGHT] \boxed{55}

Explanation

The reasoning follows the standard formula for a confidence interval: (\bar{x} \pm z \frac{\sigma}{\sqrt{n}}), where (z = 2.58), (\sigma = 5), and (n = 36).

First, compute the standard error: (\text{SE} = \frac{5}{\sqrt{36}} = \frac{5}{6} \approx 0.8333).

Next, calculate the margin of error: (E = 2.58 \times \frac{5}{6} \approx 2.15).

The given lower bound is (\bar{x} - E = 1.2), so the upper bound is (a = \bar{x} + E = 1.2 + 2E).

Substitute (E \approx 2.15): (2E \approx 4.3), thus (a \approx 1.2 + 4.3 = 5.5).

Finally, compute (10a \approx 10 \times 5.5 = 55), matching the Python output of 55.00000000000001, which rounds to the exact integer 55.

Final Model Output
55

Comparative Analysis (P35) (Average across runs)

Avg Time Taken

EXAONE-4.0.1-32B (high)
636.4
Llama-VARCO-8B-Instruct
80.1
HCX-007(high)
49.6
Deepseek-V3.2
47.8
Gemini-3-Pro-Preview
24.4
Solar-Pro-2 (31B)(high)
16.4
Claude-Opus-4.5
13.8
A.X-4.0 (72B)
13.8
Grok-4.1-fast
10.6
GPT-5.1 (high)
7.8

Avg Token Usage

Llama-VARCO-8B-Instruct
6041.0
HCX-007(high)
5122.0
Gemini-3-Pro-Preview
4633.0
Solar-Pro-2 (31B)(high)
4521.0
Grok-4.1-fast
4352.0
A.X-4.0 (72B)
3481.0
Claude-Opus-4.5
3452.0
Deepseek-V3.2
2931.0
GPT-5.1 (high)
2481.0
EXAONE-4.0.1-32B (high)
1752.0