Problem Analysis #38

31.97s
6,540 toks
Problem Statement

Let aa be a natural number with a6a \leq 6. Using one die and one coin, perform the following experiment.\begin{center}\fbox{\begin{minipage}{0.9\textwidth}Roll the die once.\quad-- If the outcome is less than or equal to aa, toss the coin 55 times and record the number of heads.\quad-- If the outcome is greater than aa, toss the coin 33 times and record the number of heads.\end{minipage}}\end{center}Repeat this experiment 1920019200 times, and let XX be the number of times the recorded value is 33. Suppose that E(X)=4800\text{E}(X) = 4800. Using the standard normal table on the right, computeP(X4800+30a),\text{P}(X \leq 4800 + 30a),and let this value be kk. Compute 1000 $$\times$$ k. [4 points]\begin{center}\begin{tabular}{|c|c|}\hlinezz & P(0Zz)\text{P}(0 \leq Z \leq z) \\hline0.5 & 0.191 \\hline1.0 & 0.341 \\hline1.5 & 0.433 \\hline2.0 & 0.477 \\hline2.5 & 0.494 \\hline3.0 & 0.499 \\hline\end{tabular}\end{center}\

Ground Truth
977
Execution Trace
Reasoning Process

[THOUGHT] First, determine a such that E(X)=4800. n=19200. p = (a+4)/32 from derivation. np=19200*(a+4)/32=600(a+4)=4800 ⇒ a+4=8 ⇒ a=4. Verify with code by computing for a=1 to 6.

Then μ=4800, p=0.25, σ=sqrt(192000.250.75)=60.

Then 4800+30*4=4920. For normal approx P(X≤4920) ≈ Φ( (4920.5-4800)/60 ) or without cc.

But since table and exact 120/60=2, likely z=2, Φ(2)=0.5+0.477=0.977, 1000k=977.

Use Python to confirm a, μ, σ, and perhaps compute exact cdf with scipy.stats.norm.cdf for reference, but final from table. [/THOUGHT] [PYTHON] import numpy as np from scipy.stats import binom, norm

n = 19200 for a in range(1,7): p = (a + 4) / 32 mu = n * p print(f'a={a}, p={p}, mu={mu}')

p = 8/32 var = n * p * (1-p) sigma = np.sqrt(var) print(f'sigma={sigma}')

threshold = 4800 + 30*4 print(f'threshold={threshold}')

z_no_cc = (threshold - 4800) / sigma z_cc = (threshold + 0.5 - 4800) / sigma print(f'z no cc={z_no_cc}, z cc={z_cc}')

phi2 = 0.5 + 0.477 print(f'table approx={phi2}')

k_scipy_cc = norm.cdf(z_cc) k_scipy_no = norm.cdf(z_no_cc) print(f'scipy cc={k_scipy_cc}, 1000k={1000k_scipy_cc}') print(f'scipy no cc={k_scipy_no}, 1000k={1000k_scipy_no}') [/PYTHON]

Tool Output
[PYTHON OUTPUT] a=1, p=0.15625, mu=3000.0 a=2, p=0.1875, mu=3600.0 a=3, p=0.21875, mu=4200.0 a=4, p=0.25, mu=4800.0 a=5, p=0.28125, mu=5400.0 a=6, p=0.3125, mu=6000.0 sigma=60.0 threshold=4920 z no cc=2.0, z cc=2.0083333333333333 table approx=0.977 scipy cc=0.9776960590006879, 1000k=977.6960590006879 scipy no cc=0.9772498680518208, 1000k=977.2498680518208 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] From output, a=4, sigma=60, threshold=4920, z=2.0. Table: P(Z≤2)=0.5+0.477=0.977, so 1000k=977. [/THOUGHT] \boxed{977}

Explanation

The reasoning follows a step-by-step process to solve the problem using the provided Python output as ground truth.

  1. Identify (a): The output shows that for (a=4), (\mu = 19200 \times p = 4800), where (p = (a + 4)/32 = 8/32 = 0.25), matching (\text{E}(X) = 4800).

  2. Compute variance and standard deviation: With (n=19200) and (p=0.25), variance = (n \times p \times (1-p) = 19200 \times 0.25 \times 0.75 = 3600), so (\sigma = \sqrt{3600} = 60).

  3. Determine the threshold: (4800 + 30a = 4800 + 30 \times 4 = 4920).

  4. Calculate z-score for normal approximation: (z = \frac{4920 - 4800}{60} = \frac{120}{60} = 2.0).

  5. Use standard normal table: The table gives (\text{P}(0 \leq Z \leq 2.0) = 0.477), so (\text{P}(Z \leq 2.0) = 0.5 + 0.477 = 0.977).

  6. Compute final value: (k = 0.977), thus (1000 \times k = 977).

Final Model Output
977

Comparative Analysis (P38) (Average across runs)

Avg Time Taken

Llama-VARCO-8B-Instruct
69.5
Solar-Pro-2 (31B)(high)
64.7
Gemini-3-Pro-Preview
57.4
Deepseek-V3.2
51.2
Grok-4.1-fast
32.0
HCX-007(high)
30.4
A.X-4.0 (72B)
28.0
GPT-5.1 (high)
25.8
Claude-Opus-4.5
21.1
EXAONE-4.0.1-32B (high)
7.3

Avg Token Usage

Solar-Pro-2 (31B)(high)
10399.0
Gemini-3-Pro-Preview
10165.0
Grok-4.1-fast
6540.0
Claude-Opus-4.5
5947.0
Deepseek-V3.2
5195.0
HCX-007(high)
5075.0
EXAONE-4.0.1-32B (high)
4934.0
GPT-5.1 (high)
3762.0
Llama-VARCO-8B-Instruct
3117.0
A.X-4.0 (72B)
2613.0