Problem Analysis #4

63.08s
13,781 toks
Problem Statement

Consider a function f(t)f(t) of a real variable tt, where f(t)|f(t)| and f(t)2|f(t)|^2 are integrable. Let F(ω)=F[f(t)]F(\omega) = \mathcal{F}[f(t)] denote the Fourier transform of f(t)f(t):F(ω)=F[f(t)]=f(t)eiωtdt,F(\omega) = \mathcal{F}[f(t)]= \int_{-\infty}^{\infty} f(t)\,e^{-i\omega t}\,dt,where ω\omega is a real number and ii is the imaginary unit. Assume the following identity holds:F(ω)2dω=2πf(t)2dt.\int_{-\infty}^{\infty} |F(\omega)|^2\,d\omega= 2\pi \int_{-\infty}^{\infty} |f(t)|^2\,dt.Let Rf(τ)R_f(\tau) denote the autocorrelation function of f(t)f(t):Rf(τ)=f(t)f(tτ)dt,R_f(\tau) = \int_{-\infty}^{\infty} f(t)\,f(t-\tau)\,dt,where τ\tau is a real number.\subsection*{I.}Consider the case where f(t)f(t) is defined byf(t)={cos(at)(tπ2a),0(t>π2a),f(t) =\begin{cases}\cos(at) & (|t| \le \dfrac{\pi}{2a}),\\[1mm]0 & (|t| > \dfrac{\pi}{2a}),\end{cases}where aa is a positive real constant. Find the following:

  • [(1)] The Fourier transform F(ω)F(\omega).

  • [(2)] The autocorrelation function Rf(τ)R_f(\tau).

  • [(3)] The Fourier transform F[Rf(τ)]\mathcal{F}[R_f(\tau)]. \subsection*{II.}Using the results of I, evaluate the following integrals:

  • [(1)] cos2 ⁣(πx2)(x21)2dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^2\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^2}\,dx,

  • [(2)] cos4 ⁣(πx2)(x21)4dx\displaystyle \int_{-\infty}^{\infty} \frac{\cos^4\!\bigl(\frac{\pi x}{2}\bigr)}{(x^2-1)^4}\,dx. Let AA denote the value obtained in {\rm II(1)}, and let BB denote the value obtained in {\rm II(2)}. In addition, for the case a=1a=1 in I, let F(0)F(0) be the value of the Fourier transform in {\rm I(1)} at ω=0\omega=0.DefineK=37(F(0))4+999(96B16A230A)+123456.\mathcal{K}= 37\bigl(F(0)\bigr)^4+ 999\bigl(96B - 16A^2 - 30A\bigr)+ 123456.Compute the integer K\mathcal{K}.\

Ground Truth
124048
Execution Trace
Reasoning Process

[THOUGHT] The key results are derived as follows. For a=1, F(ω) = 2 cos(π ω / 2) / (1 - ω²), so F(0) = 2. Parseval gives ∫ |F(ω)|² dω = 2π ∫ |f(t)|² dt = 2π (π/2) = π². Thus, A = ∫ cos²(π x / 2) / (x² - 1)² dx = (1/4) π² = π²/4.

For B, |F(ω)|⁴ = FT of autocorrelation of R_f, so ∫ |F|⁴ dω = 2π ∫ |R_f(τ)|² dτ. Thus B = (1/16) ∫ |F|⁴ = (π/8) ∫ |R_f|² dτ.

R_f(τ) = (1/2) [(π - |τ|) cos|τ| + sin|τ|] for |τ| ≤ π, 0 else. So ∫ |R_f|² dτ = 2 ∫₀^π r(τ)² dτ with r(τ) = (1/2)[(π - τ) cos τ + sin τ].

Use sympy to compute ∫₀^π r(τ)² dτ exactly, then B, then K. [/THOUGHT] [PYTHON] import sympy as sp

tau, pi = sp.symbols('tau pi') pi = sp.pi # Use numerical pi? No, symbolic.

Better:

tau = sp.symbols('tau') pi_sym = sp.pi

g = (pi_sym - tau) * sp.cos(tau) + sp.sin(tau) r = g / 2 integrand = r**2

I = sp.integrate(integrand, (tau, 0, pi_sym)) print('I:', I)

total_R2 = 2 * I print('total_R2:', total_R2)

A = pi_sym**2 / 4 print('A:', A)

B = (pi_sym / 8) * total_R2 print('B:', B)

F0 = 2 print('F0:', F0)

expr_inside = 96 * B - 16 * A**2 - 30 * A print('96B -16A2 -30A:', expr_inside)

K = 37 * F0**4 + 999 * expr_inside + 123456 print('K:', K) print('K simplified:', sp.simplify(K)) print('K numerical:', float(K)) [/PYTHON]

Tool Output
[PYTHON OUTPUT] I: 5*pi/16 + pi**3/24 total_R2: 5*pi/8 + pi**3/12 A: pi**2/4 B: pi*(5*pi/8 + pi**3/12)/8 F0: 2 96B -16A2 -30A: -pi**4 - 15*pi**2/2 + 12*pi*(5*pi/8 + pi**3/12) K: -999*pi**4 - 14985*pi**2/2 + 124048 + 11988*pi*(5*pi/8 + pi**3/12) K simplified: 124048 K numerical: 124048.0 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output confirms K simplifies exactly to 124048. [/THOUGHT] \boxed{124048}

Explanation

The reasoning follows from the problem's structure and Fourier analysis properties. For (a=1), the function (f(t)) is (\cos(t)) for (|t| \leq \pi/2) and 0 otherwise. Its Fourier transform is (F(\omega) = \frac{2 \cos(\pi \omega / 2)}{1 - \omega^2}), so (F(0) = 2).

Parseval's theorem gives (\int_{-\infty}^{\infty} |F(\omega)|^2 , d\omega = 2\pi \int_{-\infty}^{\infty} |f(t)|^2 , dt). Compute (\int |f(t)|^2 , dt = \int_{-\pi/2}^{\pi/2} \cos^2(t) , dt = \pi/2), yielding (\int |F(\omega)|^2 , d\omega = \pi^2). Thus, integral II(1) is (A = \int_{-\infty}^{\infty} \frac{\cos^2(\pi x / 2)}{(x^2 - 1)^2} , dx = \frac{1}{4} \int |F(x)|^2 , dx = \frac{\pi^2}{4}).

For II(2), note that (\int |F(\omega)|^4 , d\omega = 2\pi \int |R_f(\tau)|^2 , d\tau), where (R_f(\tau)) is the autocorrelation. For (|\tau| \leq \pi), (R_f(\tau) = \frac{1}{2} [(\pi - |\tau|) \cos(|\tau|) + \sin(|\tau|)]), and 0 otherwise. Thus, (\int |R_f(\tau)|^2 , d\tau = 2 \int_0^\pi r(\tau)^2 , d\tau) with (r(\tau) = \frac{1}{2} [(\pi - \tau) \cos \tau + \sin \tau]).

SymPy computes (\int_0^\pi r(\tau)^2 , d\tau = \frac{5\pi}{16} + \frac{\pi^3}{24}), so (\int |R_f|^2 , d\tau = \frac{5\pi}{8} + \frac{\pi^3}{12}). Then, (B = \int \frac{\cos^4(\pi x / 2)}{(x^2 - 1)^4} , dx = \frac{1}{16} \int |F(x)|^4 , dx = \frac{\pi}{8} \left( \frac{5\pi}{8} + \frac{\pi^3}{12} \right)).

Substitute into (\mathcal{K} = 37 [F(0)]^4 + 999 (96B - 16A^2 - 30A) + 123456). SymPy evaluation yields (96B - 16A^2 - 30A) such that the full expression simplifies exactly to 124048, confirming the integer result.

Final Model Output
124048

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

GPT-5.1 (high)
414.5
Gemini-3-Pro-Preview
235.9
Deepseek-V3.2
172.0
Solar-Pro-2 (31B)(high)
168.4
Llama-VARCO-8B-Instruct
128.4
A.X-4.0 (72B)
124.6
Grok-4.1-fast
63.1
Claude-Opus-4.5
52.5
HCX-007(high)
32.4
EXAONE-4.0.1-32B (high)
9.1

Avg Token Usage

Solar-Pro-2 (31B)(high)
22565.0
GPT-5.1 (high)
18561.0
Deepseek-V3.2
17612.0
Grok-4.1-fast
13781.0
Gemini-3-Pro-Preview
12183.0
Claude-Opus-4.5
9408.0
A.X-4.0 (72B)
9126.0
Llama-VARCO-8B-Instruct
8388.0
EXAONE-4.0.1-32B (high)
5657.0
HCX-007(high)
5162.0