Problem Analysis #7

70.15s
14,838 toks
Problem Statement

Answer the following questions about a real symmetric matrix AA:A=(012102223).A =\begin{pmatrix}0 & 1 & 2 \\1 & 0 & 2 \\2 & 2 & 3\end{pmatrix}.

  • [I.] Find all the different eigenvalues of matrix AA, λ1,,λr\lambda_1, \cdots, \lambda_r (λ1<<λr\lambda_1 < \cdots < \lambda_r).
  • [II.] Find all the eigenspaces W(λ1),,W(λr)W(\lambda_1), \cdots, W(\lambda_r) corresponding to λ1,,λr\lambda_1, \cdots, \lambda_r, respectively.
  • [III.] Find an orthonormal basis b1,b2,b3b_1, b_2, b_3 consisting of eigenvectors of AA, each belonging to one of W(λ1),,W(λr)W(\lambda_1), \cdots, W(\lambda_r) obtained in Question II.
  • [IV.] Find the spectral decomposition of AA: A=i=1rλiPi, A = \sum_{i=1}^{r} \lambda_i P_i, where PiP_i is the projection matrix onto W(λi)W(\lambda_i).
  • [V.] Find AnA^n, where nn is any positive integer.
  • [VI.] Let λ1<λ2\lambda_1 < \lambda_2 be the eigenvalues from {\rm I}, and let d1:=dimW(λ1). d_1 := \dim W(\lambda_1). Let b1,b2,b3b_1,b_2,b_3 be the orthonormal eigenbasis from {\rm III}, and assume b3W(λ2)b_3 \in W(\lambda_2). Denote by (b3)1(b_3)_1 the first component of b3b_3, and set β:=(b3)12. \beta := |(b_3)_1|^2. For n=10n=10, let S10S_{10} be the sum of all entries of the matrix A10A^{10}: S10:=i=13j=13(A10)ij. S_{10} := \sum_{i=1}^3 \sum_{j=1}^3 (A^{10})_{ij}. Define S:=(λ2λ1)d1β1S10,K:=999S2+7. S := (\lambda_2 - \lambda_1)\, d_1\, \beta^{-1} S_{10}, \qquad \mathcal{K} := 999\,S^2 + 7. Compute the integer K\mathcal{K}. \
Ground Truth
3512109464910000575431
Execution Trace
Reasoning Process

[THOUGHT] First computation: define A and compute eigenvects to get eigenvalues and eigenvectors. [/THOUGHT] [PYTHON] from sympy import * A = Matrix([[0,1,2],[1,0,2],[2,2,3]]) ev = A.eigenvects() pprint(ev) [/PYTHON]

Tool Output
[PYTHON OUTPUT] ⎡⎛ ⎡⎡-1⎤ ⎡-2⎤⎤⎞ ⎛ ⎡⎡1/2⎤⎤⎞⎤ ⎢⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥ ⎢⎜-1, 2, ⎢⎢1 ⎥, ⎢0 ⎥⎥⎟, ⎜5, 1, ⎢⎢1/2⎥⎥⎟⎥ ⎢⎜ ⎢⎢ ⎥ ⎢ ⎥⎥⎟ ⎜ ⎢⎢ ⎥⎥⎟⎥ ⎣⎝ ⎣⎣0 ⎦ ⎣1 ⎦⎦⎠ ⎝ ⎣⎣ 1 ⎦⎦⎠⎦ [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The eigenvalues are λ1=1\lambda_1 = -1 and λ2=5\lambda_2 = 5. The eigenspace W(λ1)W(\lambda_1) has dimension d1=2d_1 = 2 and is spanned by (110)\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} and (201)\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}. The eigenspace W(λ2)W(\lambda_2) is spanned by (1/21/21)\begin{pmatrix} 1/2 \\ 1/2 \\ 1 \end{pmatrix}. An orthonormal eigenbasis can be obtained by Gram-Schmidt on the first eigenspace and normalizing the second eigenvector. The normalized b3=13/2(1/21/21)b_3 = \frac{1}{\sqrt{3/2}} \begin{pmatrix} 1/2 \\ 1/2 \\ 1 \end{pmatrix}, so β=(b3)12=1/6\beta = |(b_3)_1|^2 = 1/6. Then S10=26041667S_{10} = 26041667, S=1875000024S = 1875000024, and K=3512109375089910575431\mathcal{K} = 3512109375089910575431. [/THOUGHT] \boxed{3512109375089910575431}

Explanation

The provided AI-generated answer derives from the spectral decomposition of the symmetric matrix (A) and targeted computations for part VI. The process begins with the eigenvalues and eigenvectors from the SymPy output: (\lambda_1 = -1) (algebraic multiplicity 2, geometric multiplicity 2, spanned by ([-1, 1, 0]^T) and ([-2, 0, 1]^T)) and (\lambda_2 = 5) (multiplicity 1, spanned by ([1/2, 1/2, 1]^T)).

For part VI, compute (\beta = |(b_3)_1|^2), where (b_3) is the unit eigenvector for (\lambda_2). The vector (u_3 = [1/2, 1/2, 1]^T) has norm (|u_3| = \sqrt{(1/2)^2 + (1/2)^2 + 1^2} = \sqrt{3/2}). Thus, (b_3 = u_3 / \sqrt{3/2}), and the first component is ((1/2) / \sqrt{3/2} = \sqrt{2/12} = 1/\sqrt{6}), so (\beta = (1/\sqrt{6})^2 = 1/6).

Next, (S_{10} = \sum_{i,j} (A^{10}){ij} = \mathbf{1}^T A^{10} \mathbf{1}), where (\mathbf{1} = [1, 1, 1]^T). Using spectral decomposition, (A^{10} = (-1)^{10} P_1 + 5^{10} P_2 = P_1 + 5^{10} P_2), so (S{10} = \mathbf{1}^T P_1 \mathbf{1} + 5^{10} \mathbf{1}^T P_2 \mathbf{1}). Here, (\mathbf{1}^T P_2 \mathbf{1} = (\mathbf{1}^T b_3)^2). Compute (\mathbf{1}^T u_3 = 2), so (\mathbf{1}^T b_3 = 2 / \sqrt{3/2} = 2 \sqrt{2/3}), and (\mathbf{1}^T P_2 \mathbf{1} = [2 \sqrt{2/3}]^2 = 8/3). Then (\mathbf{1}^T P_1 \mathbf{1} = \mathbf{1}^T \mathbf{1} - 8/3 = 3 - 8/3 = 1/3). With (5^{10} = 9,765,625), (S_{10} = 1/3 + (8/3) \cdot 9,765,625 = (1 + 78,125,000)/3 = 78,125,001 / 3 = 26,041,667).

Now, (S = (\lambda_2 - \lambda_1) d_1 \beta^{-1} S_{10} = (5 - (-1)) \cdot 2 \cdot 6 \cdot 26,041,667 = 6 \cdot 2 \cdot 6 \cdot 26,041,667 = 72 \cdot 26,041,667 = 1,875,000,024).

Finally, (\mathcal{K} = 999 S^2 + 7). Compute (S^2 = (1,875,000,024)^2 = 3,515,625,000,090,000,576). Then (999 S^2 = 1,000 S^2 - S^2 = 3,515,625,000,090,000,576,000 - 3,515,625,000,090,000,576 = 3,515,625,000,090,000,576,000 - 3,515,625,000,090,000,576) (via digit-wise subtraction with borrows), yielding (3,512,109,375,089,910,575,424). Adding 7 gives (\mathcal{K} = 3,512,109,375,089,910,575,431).

Final Model Output
3512109375089910575431

Comparative Analysis (P7) (Average across runs)

Avg Time Taken

Deepseek-V3.2
716.8
Gemini-3-Pro-Preview
238.5
Llama-VARCO-8B-Instruct
171.0
GPT-5.1 (high)
91.4
Grok-4.1-fast
70.1
Solar-Pro-2 (31B)(high)
68.0
Claude-Opus-4.5
34.8
A.X-4.0 (72B)
32.0
HCX-007(high)
29.5
EXAONE-4.0.1-32B (high)
2.2

Avg Token Usage

Grok-4.1-fast
14838.0
Deepseek-V3.2
14663.0
Llama-VARCO-8B-Instruct
13773.0
Solar-Pro-2 (31B)(high)
12124.0
GPT-5.1 (high)
11204.0
Gemini-3-Pro-Preview
10464.0
Claude-Opus-4.5
10354.0
A.X-4.0 (72B)
5137.0
HCX-007(high)
4970.0
EXAONE-4.0.1-32B (high)
3503.0