Problem Analysis #8

60.18s
10,596 toks
Problem Statement

Answer the following questions. Here, for any complex value zz, zˉ\bar{z} is the complex conjugate of zz, argz\arg z is the argument of zz, z|z| is the absolute value of zz, and ii is the imaginary unit.\subsection*{I.}Sketch the region of zz on the complex plane that satisfieszzˉ+2(z+zˉ)+3i(zzˉ)+20.z\bar{z} + \sqrt{2}(z + \bar{z}) + 3i(z - \bar{z}) + 2 \leq 0.\subsection*{II.}Consider the complex-valued functionf(z)=z22(z2+2i)z2.f(z) = \frac{z^2 - 2}{(z^2 + 2i)z^2}.

  • [(1)] Find all the poles of f(z)f(z) as well as the orders and residues at the poles.

  • [(2)] By applying the residue theorem, find the value of the integral I1=Cf(z)dz, I_1 = \oint_C f(z)\,dz, where the integration path CC is the circle in the counterclockwise direction given by z+1=2|z + 1| = 2. \subsection*{III.}

  • [(1)] Let g(z)g(z) be a complex-valued function satisfying limzg(z)=0 \lim_{|z|\to\infty} g(z) = 0 for 0 $$\leq$$ \arg z $$\leq$$ $$\pi$$$. Let C_Rbethesemicircle,withradiusbe the semicircle, with radiusR, in the upper half of the complex plane with center at the origin. Show that $$ \lim_{R\to\infty} \int_{C_R} e^{iaz} g(z)\,dz = 0, $$ where a$ is a positive real number.

  • [(2)] Find the value of the integral I2=0sinxxdx. I_2 = \int_0^{\infty} \frac{\sin x}{x}\,dx. \subsection*{IV. Final quantity}In I, the region for zz is a disk. Let RR be its radius and cc be its center. In II(2), let RinR_{\mathrm{in}} be the sum of the residues of f(z)f(z) over all poles lying inside the circle z+1=2|z + 1| = 2. In II(2) and III(2), let I1I_1 and I2I_2 be the values of the corresponding integrals.DefineS:=(R2+c2)2(I1I2)31Rin,K:=999S2+7.S := (R^2 + |c|^2)^2 \left(\frac{|I_1|}{I_2}\right)^3 \cdot \frac{1}{|R_{\mathrm{in}}|},\qquad\mathcal{K} := 999\,S^2 + 7.Compute the integer K\mathcal{K}.\

Ground Truth
40919040007
Execution Trace
Reasoning Process

[THOUGHT] The region in I is the disk |z - (-√2 + 3i)| ≤ 3, so R=3, c=-√2 + 3i, |c|^2 = 2 + 9 = 11, R^2 + |c|^2 = 9 + 11 = 20.

Poles of f(z): z=0 (order 2, res=0), z=1-i (res=1/2), z=-1+i (res=-1/2).

Inside C: |z+1|=2, poles 0 and -1+i, sum res R_in = 0 + (-1/2) = -1/2, |R_in|=1/2.

I1 = 2πi * (-1/2) = -πi, |I1|=π.

I2 = π/2, |I1|/I2 = 2, (|I1|/I2)^3 = 8.

S = 20^2 * 8 * (1 / 0.5) = 400 * 8 * 2 = 6400.

K = 999 * S^2 + 7 = 999 * 6400^2 + 7.

Verify the computation of K with Python. [/THOUGHT] [PYTHON] print(999 * (6400 ** 2) + 7) [/PYTHON]

Tool Output
[PYTHON OUTPUT] 40919040007 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The Python output confirms K=40919040007\mathcal{K} = 40919040007. [/THOUGHT] \boxed{40919040007}

Explanation

The reasoning follows a step-by-step verification of each component to compute (\mathcal{K}).

For part I, substitute (z = x + iy) into the inequality (z\bar{z} + \sqrt{2}(z + \bar{z}) + 3i(z - \bar{z}) + 2 \leq 0):

  • (z\bar{z} = x^2 + y^2)
  • (z + \bar{z} = 2x)
  • (z - \bar{z} = 2iy), so (3i(z - \bar{z}) = 3i(2iy) = -6y)
  • The inequality simplifies to (x^2 + y^2 + 2\sqrt{2}x - 6y + 2 \leq 0)
  • Completing the square: ((x + \sqrt{2})^2 + (y - 3)^2 \leq 9)
  • This describes a disk with center (c = -\sqrt{2} + 3i) and radius (R = 3)
  • Compute (|c|^2 = (\sqrt{2})^2 + 3^2 = 2 + 9 = 11)
  • Thus, (R^2 + |c|^2 = 9 + 11 = 20)

For part II(1), identify poles of (f(z) = \frac{z^2 - 2}{z^2 (z^2 + 2i)}):

  • Pole at (z = 0) of order 2; residue is (\lim_{z \to 0} \frac{d}{dz} \left[ \frac{z^2 - 2}{z^2 + 2i} \right] = 0)
  • Poles at roots of (z^2 + 2i = 0), so (z^2 = -2i); solutions are (z = 1 - i) and (z = -1 + i) (simple poles)
  • Residue at (z = 1 - i): (\frac{(1 - i)^2 - 2}{ \frac{d}{dz} [z^2 (z^2 + 2i)] \big|_{z=1-i} } = \frac{-2(1 + i)}{-4i(1 - i)} = \frac{1}{2})
  • Residue at (z = -1 + i): (\frac{(-1 + i)^2 - 2}{ \frac{d}{dz} [z^2 (z^2 + 2i)] \big|_{z=-1+i} } = \frac{-2(1 + i)}{4(1 + i)} = -\frac{1}{2})

For part II(2), the contour (C: |z + 1| = 2) encloses poles at (z = 0) ((|0 + 1| = 1 < 2)) and (z = -1 + i) ((|-1 + i + 1| = 1 < 2)), but not (z = 1 - i) ((|1 - i + 1| = \sqrt{5} > 2))

  • Sum of residues inside (C): (R_{\mathrm{in}} = 0 + (-\frac{1}{2}) = -\frac{1}{2}), so (|R_{\mathrm{in}}| = \frac{1}{2})
  • (I_1 = 2\pi i \cdot R_{\mathrm{in}} = 2\pi i \cdot (-\frac{1}{2}) = -\pi i), so (|I_1| = \pi)

For part III(2), the integral (I_2 = \int_0^\infty \frac{\sin x}{x} , dx = \frac{\pi}{2}) (standard result from contour integration)

Compute (S):

  • (\frac{|I_1|}{I_2} = \frac{\pi}{\pi/2} = 2), so (\left( \frac{|I_1|}{I_2} \right)^3 = 8)
  • (S = (20)^2 \cdot 8 \cdot \frac{1}{1/2} = 400 \cdot 8 \cdot 2 = 6400)
  • (\mathcal{K} = 999 \cdot S^2 + 7 = 999 \cdot 6400^2 + 7)
  • Python verification: print(999 * (6400 ** 2) + 7) yields 40919040007, confirming the exact integer value.
Final Model Output
40919040007

Comparative Analysis (P8) (Average across runs)

Avg Time Taken

Gemini-3-Pro-Preview
276.8
Deepseek-V3.2
202.1
GPT-5.1 (high)
91.6
Llama-VARCO-8B-Instruct
63.3
Grok-4.1-fast
60.2
A.X-4.0 (72B)
58.6
Claude-Opus-4.5
42.7
Solar-Pro-2 (31B)(high)
41.8
HCX-007(high)
20.4
EXAONE-4.0.1-32B (high)
5.5

Avg Token Usage

Gemini-3-Pro-Preview
15034.0
Claude-Opus-4.5
12309.0
Grok-4.1-fast
10596.0
Solar-Pro-2 (31B)(high)
9159.0
A.X-4.0 (72B)
9042.0
GPT-5.1 (high)
8139.0
Deepseek-V3.2
8047.0
HCX-007(high)
5016.0
EXAONE-4.0.1-32B (high)
4747.0
Llama-VARCO-8B-Instruct
1832.0