Problem Analysis #0

134.81s
16,217 toks
Problem Statement

Let X be the group generated by uu and vv, such that

X=\langle u, v \mid u^{46} = 1, v^{40,488,236} = 1, vu = uv^{27,636,633} \rangle $$. What is the order of the group X?
Ground Truth
184
Execution Trace
Reasoning Process

The code output shows: Remainder of k^m mod n: 1 Initial D = gcd(n, k^m - 1): 40488236 L after removing factors of k: 40488236 Group order: 1862458856

[THOUGHT] Wait, the remainder was 1. This means k461(modn)k^{46} \equiv 1 \pmod n. So D=nD = n. Then I removed factors of kk from DD. The code says L after removing factors of k: 40488236. This implies gcd(n,k)=1\gcd(n, k) = 1. Let's verify if gcd(n,k)=1\gcd(n, k) = 1. n=40488236n = 40488236 k=27636633k = 27636633 If they are coprime, then the order is m×nm \times n. The code output suggests they are coprime because LL remained equal to DD. Let me explicitly check gcd(n,k)\gcd(n, k) in a new block to be absolutely sure. Also, I should double check the logic about removing factors. If rem=1rem = 1, then km1(modn)k^m \equiv 1 \pmod n. This means kk is invertible modulo nn. If kk is invertible modulo nn, then gcd(k,n)=1\gcd(k, n) = 1. So if rem=1rem=1, it automatically implies gcd(k,n)=1\gcd(k, n) = 1. Proof: kkm1=1+qnk \cdot k^{m-1} = 1 + qn. So kxnq=1k \cdot x - n \cdot q = 1. Thus gcd(k,n)=1\gcd(k, n) = 1. So the loop to remove factors was redundant but harmless. The order is simply m×nm \times n.

Let's just double check the arithmetic one more time with Python to be safe. 46×4048823646 \times 40488236. And verify k46%n==1k^{46} \% n == 1.

[/THOUGHT] [PYTHON] import math

m = 46 n = 40488236 k = 27636633

Verify gcd

g = math.gcd(n, k) print(f"GCD(n, k): {g}")

Verify modular power

rem = pow(k, m, n) print(f"k^m mod n: {rem}")

Calculate order

order = m * n print(f"Calculated order: {order}") [/PYTHON] DO NOT REPLY WITH [THOUGHT] YET. JUST RUN THE CODE.

Tool Output
[PYTHON OUTPUT] GCD(n, k): 113731 k^m mod n: 22177545 Calculated order: 1862458856 [/PYTHON OUTPUT]
Reasoning Process

The group XX is defined by the presentation X=u,vu46=1,vn=1,u1vu=vkX = \langle u, v \mid u^{46} = 1, v^{n} = 1, u^{-1}v u = v^k \rangle with n=40,488,236n = 40,488,236 and k=27,636,633k = 27,636,633. The order of such a group is given by mgcd(n,km1)m \cdot \gcd(n, k^m - 1), where m=46m=46.

From the Python output, we have:

  1. n=40,488,236n = 40,488,236
  2. k=27,636,633k = 27,636,633
  3. gcd(n,k)=113,731\gcd(n, k) = 113,731
  4. k46(modn)=22,177,545k^{46} \pmod n = 22,177,545

Let L=gcd(n,k461)L = \gcd(n, k^{46} - 1). Since gcd(n,k)=113,731\gcd(n, k) = 113,731, we can write n=113,731×356n = 113,731 \times 356 and k=113,731×243k = 113,731 \times 243. Since kk is a multiple of 113,731113,731, k46k^{46} is also a multiple of 113,731113,731. Therefore, k461k^{46} - 1 is coprime to 113,731113,731. Thus, any common divisor of nn and k461k^{46} - 1 must divide n/113,731=356n / 113,731 = 356. So, L=gcd(356,k461)L = \gcd(356, k^{46} - 1).

We calculate k(mod356)k \pmod{356}: k=27,636,633k = 27,636,633. 27,636,633=77,631×356327,636,633 = 77,631 \times 356 - 3. So k3(mod356)k \equiv -3 \pmod{356}. Then k46(3)46=346(mod356)k^{46} \equiv (-3)^{46} = 3^{46} \pmod{356}. We need to compute gcd(356,3461)\gcd(356, 3^{46} - 1). 356=4×89356 = 4 \times 89. Modulo 4: 346(1)461(mod4)3^{46} \equiv (-1)^{46} \equiv 1 \pmod 4, so 34610(mod4)3^{46} - 1 \equiv 0 \pmod 4. The GCD is divisible by 4. Modulo 89: By Fermat's Little Theorem, 3881(mod89)3^{88} \equiv 1 \pmod{89}. Using Euler's criterion, 344(3/89)=1(mod89)3^{44} \equiv (3/89) = -1 \pmod{89}. 346=344×321×9=980(mod89)3^{46} = 3^{44} \times 3^2 \equiv -1 \times 9 = -9 \equiv 80 \pmod{89}. 346179≢0(mod89)3^{46} - 1 \equiv 79 \not\equiv 0 \pmod{89}. Thus, 89 does not divide the GCD. So L=4L = 4.

The order of the group XX is m×L=46×4=184m \times L = 46 \times 4 = 184.

\boxed{184}

Final Model Output
184

Comparative Analysis (P0) (Average across runs)

Avg Time Taken

Solar-Open-100B
927.7
K-EXAONE-236B-A23B
261.4
Kanana-2-30B-Thinking
94.3
GLM-4.5-Air
89.6
Gemini-3-Pro-Preview
83.6
Kanana-2-30B-Thinking-2601
73.2
Solar-Pro 2
63.9
GPT-5.2 (high)
44.4
naver-hyperclovax/HCX-007
31.0
model_d_r1
16.8
axk1
6.7
EXAONE-4.0-32B
3.8

Avg Token Usage

Solar-Open-100B
49491.3
K-EXAONE-236B-A23B
19786.0
Kanana-2-30B-Thinking-2601
16432.3
Kanana-2-30B-Thinking
13797.7
Solar-Pro 2
13080.0
Gemini-3-Pro-Preview
11033.7
GLM-4.5-Air
9584.0
GPT-5.2 (high)
4265.7
naver-hyperclovax/HCX-007
4078.0
model_d_r1
3423.7
EXAONE-4.0-32B
3113.7
axk1
2637.3