Problem Analysis #4

372.28s
18,072 toks
Problem Statement

Let C\mathcal{C} be a binary code defined as

C={(\mboxTr(u),(\mboxTr(ux+vx6))xF217,\mboxTr(v)) : u,vF217},\mathcal{C}=\{(\mbox{Tr}(u), (\mbox{Tr}(ux+vx^6))_{x\in\mathbb{F}_{2^{17}}^*}, \mbox{Tr}(v))~:~u, v\in \mathbb{F}_{2^{17}}\},

where \mboxTr:F217F2\mbox{Tr}:\mathbb{F}_{2^{17}}\to \mathbb{F}_2 is the trace map.

Let dd be the minimum distance of C\mathcal{C} and AiA_i be the number of codewords of weight ii.

Compute Ad+Ad+1+Ad+2A_d + A_{d+1} + A_{d+2}.

Ground Truth
4311711616
Execution Trace
Reasoning Process

[THOUGHT] I will simulate the code for small odd values of nn (n=5,7,9n=5, 7, 9) to find the pattern of the weight distribution, specifically Ad,Ad+1,Ad+2A_d, A_{d+1}, A_{d+2}. The code is defined by pairs (u,v)F2n2(u, v) \in \mathbb{F}_{2^n}^2. Codeword cu,v=(Tr(u),(Tr(ux+vx6))xF2n,Tr(v))c_{u,v} = (\text{Tr}(u), (\text{Tr}(ux + vx^6))_{x \in \mathbb{F}_{2^n}^*}, \text{Tr}(v)). Weight w(u,v)=Tr(u)+Tr(v)+xF2nTr(ux+vx6)w(u,v) = \text{Tr}(u) + \text{Tr}(v) + \sum_{x \in \mathbb{F}_{2^n}^*} \text{Tr}(ux + vx^6). I will compute the frequencies of each weight. Then I will extrapolate to n=17n=17.

Python approach:

  1. Implement GF(2^n).
  2. Generate all u,vu, v.
  3. Compute weights efficiently.
    • Precompute trace table.
    • Precompute x6x^6 table.
    • Use Fast Walsh-Hadamard Transform (FWHT) if possible?
      • The inner part is x0Tr(ux+vx6)\sum_{x \neq 0} \text{Tr}(ux + vx^6).
      • Let Fv(x)=Tr(vx6)F_v(x) = \text{Tr}(vx^6).
      • The sequence is Fv(x)+Tr(ux)F_v(x) + \text{Tr}(ux).
      • The weight of the sequence (over all xx) is 2n112Fv^(u)2^{n-1} - \frac{1}{2} \widehat{F_v}(u).
      • We need to subtract the x=0x=0 term: Tr(u0+v0)=0\text{Tr}(u \cdot 0 + v \cdot 0) = 0.
      • So weight over x0x \neq 0 is Wseq0=WseqW_{seq} - 0 = W_{seq}.
      • Wait, if Fv^(u)=(1)Fv(x)+Tr(ux)\widehat{F_v}(u) = \sum (-1)^{F_v(x) + \text{Tr}(ux)}, then Wseq=2n112Fv^(u)W_{seq} = 2^{n-1} - \frac{1}{2} \widehat{F_v}(u).
      • This is the weight over all xF2nx \in \mathbb{F}_{2^n}.
      • The codeword excludes x=0x=0. The value at x=0x=0 is Tr(0)=0\text{Tr}(0)=0.
      • So the weight over x0x \neq 0 is exactly the weight over all xx.
      • Total weight w(u,v)=Tr(u)+Tr(v)+(2n112Fv^(u))w(u,v) = \text{Tr}(u) + \text{Tr}(v) + (2^{n-1} - \frac{1}{2} \widehat{F_v}(u)).
  4. Algorithm:
    • For each vv:
      • Compute vector Tv=[(1)Tr(vx6)]xT_v = [ (-1)^{\text{Tr}(vx^6)} ]_{x}.
      • Compute Walsh Transform of TvT_v to get Sv=[Fv^(u)]uS_v = [ \widehat{F_v}(u) ]_u.
      • For each uu:
        • Calculate w=Tr(u)+Tr(v)+2n1Sv[u]//2w = \text{Tr}(u) + \text{Tr}(v) + 2^{n-1} - S_v[u]//2.
        • Update counts.
    • Sum counts over all vv.

Complexity: 2n2^n iterations for vv. Inside, FWHT is n2nn 2^n. Total n22nn 2^{2n}. For n=9n=9, 92182.3×1069 \cdot 2^{18} \approx 2.3 \times 10^6, very fast. For n=11n=11, 112224.6×10711 \cdot 2^{22} \approx 4.6 \times 10^7, might take 10-20 seconds. I'll stick to n=5,7,9n=5, 7, 9. [/THOUGHT] [PYTHON] import sys

def solve_weights(n): size = 1 << n # Generate field and trace # Primitive polynomial is not strictly needed for trace if we just want a field # But to be precise with x^6, we need a representation. # We can use a simple representation. # Construct GF(2^n) # For n=5, poly x^5 + x^2 + 1 # For n=7, x^7 + x + 1 # For n=9, x^9 + x^4 + 1 # For n=11, x^11 + x^2 + 1

if n == 5: poly = 0x25
elif n == 7: poly = 0x83
elif n == 9: poly = 0x211 # x^9 + x^4 + 1 = 512 + 16 + 1 = 529
elif n == 11: poly = 0x805
else: return {}

# Log/Exp tables
gf_exp = [0] * (2 * size)
gf_log = [0] * size
x = 1
for i in range(size - 1):
    gf_exp[i] = x
    gf_log[x] = i
    x <<= 1
    if x & size:
        x ^= poly
for i in range(size - 1, 2 * size):
    gf_exp[i] = gf_exp[i - (size - 1)]
    
def multiply(a, b):
    if a == 0 or b == 0: return 0
    return gf_exp[gf_log[a] + gf_log[b]]

def power(a, p):
    if a == 0: return 0
    return gf_exp[(gf_log[a] * p) % (size - 1)]
    
# Trace table
# Tr(x) = x + x^2 + x^4 + ... + x^(2^(n-1))
trace = [0] * size
for i in range(size):
    t = i
    for _ in range(n - 1):
        t = multiply(t, t) # square
        i ^= t
    trace[i] = i & 1 # Should be 0 or 1
    # Actually the loop calculates x^2... but we need sum.
    # Let's redo trace properly

# Correct trace calculation
for i in range(size):
    temp = i
    s = i
    for _ in range(n - 1):
        temp = multiply(temp, temp) # x^(2^k)
        s ^= temp
    trace[i] = s

# Precompute x^6
pow6 = [0] * size
for i in range(size):
    pow6[i] = power(i, 6)
    
# FWHT implementation
def fwht(a):
    h = 1
    while h < len(a):
        for i in range(0, len(a), h * 2):
            for j in range(i, i + h):
                x = a[j]
                y = a[j + h]
                a[j] = x + y
                a[j + h] = x - y
        h *= 2
    return a

weight_counts = {}

# Iterate v
for v in range(size):
    tr_v = trace[v]
    
    # Construct sequence for this v
    # A[x] = (-1)^Tr(v x^6)
    # We want Walsh transform at u: sum_x (-1)^(Tr(v x^6) + Tr(u x))
    seq = [0] * size
    for x in range(size):
        val = trace[multiply(v, pow6[x])]
        seq[x] = 1 if val == 0 else -1
        
    # Transform
    spectrum = list(seq)
    fwht(spectrum)
    
    # Calculate weights for all u
    # w = Tr(u) + Tr(v) + 2^(n-1) - spectrum[u]/2
    for u in range(size):
        tr_u = trace[u]
        s_u = spectrum[u]
        w = tr_u + tr_v + (size // 2) - (s_u // 2)
        weight_counts[w] = weight_counts.get(w, 0) + 1
        
return weight_counts

results = {} for n in [5, 7, 9]: print(f"Simulating n={n}...") counts = solve_weights(n) # Find d sorted_weights = sorted([k for k in counts.keys() if k > 0]) d = sorted_weights[0] print(f"n={n}, d={d}") print(f"Counts: A_d={counts.get(d,0)}, A_d+1={counts.get(d+1,0)}, A_d+2={counts.get(d+2,0)}") results[n] = (d, counts.get(d,0), counts.get(d+1,0), counts.get(d+2,0))

print("Results summary:", results) [/PYTHON]

Tool Output
[PYTHON OUTPUT] Simulating n=5... n=5, d=12 Counts: A_d=74, A_d+1=152, A_d+2=84 Simulating n=7... n=7, d=56 Counts: A_d=1260, A_d+1=2016, A_d+2=1296 Simulating n=9... n=9, d=240 Counts: A_d=17272, A_d+1=34816, A_d+2=17408 Results summary: {5: (12, 74, 152, 84), 7: (56, 1260, 2016, 1296), 9: (240, 17272, 34816, 17408)} [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The problem asks for Ad+Ad+1+Ad+2A_d + A_{d+1} + A_{d+2} for n=17n=17. Let's analyze the results for n=5,7,9n=5, 7, 9.

For n=5n=5: d=12d=12. A12=74A_{12} = 74 A13=152A_{13} = 152 A14=84A_{14} = 84 Sum = 74+152+84=31074 + 152 + 84 = 310.

For n=7n=7: d=56d=56. A56=1260A_{56} = 1260 A57=2016A_{57} = 2016 A58=1296A_{58} = 1296 Sum = 1260+2016+1296=45721260 + 2016 + 1296 = 4572.

For n=9n=9: d=240d=240. A240=17272A_{240} = 17272 A241=34816A_{241} = 34816 A242=17408A_{242} = 17408 Sum = 17272+34816+17408=6949617272 + 34816 + 17408 = 69496.

Let's look at the minimum distance dd. n=5,d=12=2422=164n=5, d=12 = 2^4 - 2^2 = 16 - 4. n=7,d=56=2623=648n=7, d=56 = 2^6 - 2^3 = 64 - 8. n=9,d=240=2824=25616n=9, d=240 = 2^8 - 2^4 = 256 - 16. Pattern for dd: 2n12(n1)/22^{n-1} - 2^{(n-1)/2}. For n=17n=17, d=21628=65536256=65280d = 2^{16} - 2^8 = 65536 - 256 = 65280.

Now let's look at the sum Sn=Ad+Ad+1+Ad+2S_n = A_d + A_{d+1} + A_{d+2}. S5=310S_5 = 310. S7=4572S_7 = 4572. S9=69496S_9 = 69496.

Let's check if there is a formula involving powers of 2. 310300310 \approx 300. 28=2562^8 = 256. 29=5122^9 = 512. 45724096=2124572 \approx 4096 = 2^{12}. 6949665536=21669496 \approx 65536 = 2^{16}.

Let's try to fit a polynomial or exponential form in 2n2^n. Let N=2nN = 2^n. n=5,N=32n=5, N=32. S=310S=310. n=7,N=128n=7, N=128. S=4572S=4572. n=9,N=512n=9, N=512. S=69496S=69496.

Let's look at Sn/2n1S_n / 2^{n-1} or similar. 310/16=19.375310 / 16 = 19.375. 4572/64=71.434572 / 64 = 71.43. 69496/256=271.4669496 / 256 = 271.46.

Let's look at the structure of the code. The code is related to the Gold code or Kasami code families, or specifically codes from quadratic forms. The function is f(x)=vx6f(x) = vx^6. The exponent 6=22+216 = 2^2 + 2^1. In general 2k+12^k + 1. Here kk is not quite matching standard forms directly for odd nn. However, for odd nn, gcd(6,2n1)=gcd(6,1)=1\gcd(6, 2^n-1) = \gcd(6, 1) = 1 if 32n13 \nmid 2^n-1. 2n(1)n1(mod3)2^n \equiv (-1)^n \equiv -1 \pmod 3. So 2n121(mod3)2^n - 1 \equiv -2 \equiv 1 \pmod 3. So xx6x \mapsto x^6 is a permutation? No, x6=(x3)2x^6 = (x^3)^2. xx3x \mapsto x^3 is a permutation if gcd(3,2n1)=1\gcd(3, 2^n-1)=1. Since nn is odd, 2n12^n-1 is not divisible by 3. So x3x^3 is a permutation. Thus vx6vx^6 behaves like vy2v y^2. Wait, if y=x3y = x^3, then as xx ranges over F2n\mathbb{F}_{2^n}, yy ranges over F2n\mathbb{F}_{2^n}. Then Tr(vx6)=Tr(vy2)=Tr(v2n1y)=Tr(wx3)\text{Tr}(vx^6) = \text{Tr}(v y^2) = \text{Tr}(v^{2^{n-1}} y) = \text{Tr}(w x^3) where w=v2n1w = v^{2^{n-1}}. So the set of functions is {Tr(ux+wx3)}\{\text{Tr}(ux + w x^3)\}. This is the dual of the double-error-correcting BCH code (if nn is odd). The weight distribution of the dual of the double-error-correcting BCH code (which is this code) is well known. The code length is 2n12^n - 1 usually, but here we have the extended code (plus Tr(u)\text{Tr}(u) and Tr(v)\text{Tr}(v) components). Actually, the definition is: c=(Tr(u),(Tr(ux+vx6))x0,Tr(v))c = (\text{Tr}(u), (\text{Tr}(ux + vx^6))_{x \neq 0}, \text{Tr}(v)). Length is 1+(2n1)+1=2n+11 + (2^n - 1) + 1 = 2^n + 1. Wait, the problem says xF217x \in \mathbb{F}_{2^{17}}^*, so 21712^{17}-1 positions. Plus Tr(u)\text{Tr}(u) and Tr(v)\text{Tr}(v). Total length 2n+12^n + 1.

Let's check the sums again. S5=310S_5 = 310. S7=4572S_7 = 4572. S9=69496S_9 = 69496.

Let's check SnS_n against 22n2^{2n}. n=5,210=1024n=5, 2^{10} = 1024. 3100.3×1024310 \approx 0.3 \times 1024. n=7,214=16384n=7, 2^{14} = 16384. 45720.28×163844572 \approx 0.28 \times 16384. n=9,218=262144n=9, 2^{18} = 262144. 694960.26×26214469496 \approx 0.26 \times 262144.

Let's look at the specific values Ad,Ad+1,Ad+2A_d, A_{d+1}, A_{d+2}. For n=5n=5: d=12d=12. Weights are likely around 2n1=162^{n-1} = 16. Weights observed: 12, 13, 14. Actually, for BCH duals, weights are usually 2n1,2n1±2(n1)/22^{n-1}, 2^{n-1} \pm 2^{(n-1)/2}. For n=5n=5: 16,16±412,16,2016, 16 \pm 4 \to 12, 16, 20. But we have extra bits Tr(u),Tr(v)\text{Tr}(u), \text{Tr}(v). This modifies the weights by adding 0,1,20, 1, 2. So weights could be 12,13,1412, 13, 14 (from 12), 16,17,1816, 17, 18 (from 16), 20,21,2220, 21, 22 (from 20). The minimum distance is d=12d=12. So we are looking for the sum of counts for weights 12,13,1412, 13, 14. These all come from the "base" weight 1212 in the cyclic part, modified by the two extra bits. The base weight 1212 corresponds to the low weight codewords in the cyclic code. In the standard dual BCH code (length 2n12^n-1), the weight distribution is: W0=0W_0 = 0 (count 1) W1=2n12(n1)/2W_1 = 2^{n-1} - 2^{(n-1)/2} (count N1N_1) W2=2n1W_2 = 2^{n-1} (count N2N_2) W3=2n1+2(n1)/2W_3 = 2^{n-1} + 2^{(n-1)/2} (count N3N_3) where N1=2n13(2n12(n1)/2)N_1 = \frac{2^n-1}{3} (2^{n-1} - 2^{(n-1)/2}), N3=2n13(2n1+2(n1)/2)N_3 = \frac{2^n-1}{3} (2^{n-1} + 2^{(n-1)/2}). Wait, the counts sum to 22n2^{2n}. Actually, for the code CBCH\mathcal{C}_{BCH}^\perp, the frequencies are: Weight 2n12(n1)/22^{n-1} - 2^{(n-1)/2}: Frequency (2n1)(2n1+2(n1)/2)/3(2^n-1)(2^{n-1} + 2^{(n-1)/2}) / 3? Let's verify with n=5n=5. Weights: 164=1216-4=12, 1616, 16+4=2016+4=20. Frequencies: A12=(31)(16+4)/3=31×20/3A_{12} = (31)(16+4)/3 = 31 \times 20 / 3? No, must be integer. Standard frequencies for Gold/Kasami-like sequences (odd nn): A2n1=22n2n(2n1)(2n)A_{2^{n-1}} = 2^{2n} - 2^n - (2^n-1)(2^n)? No. For dual of double-error correcting BCH (odd nn): Weights are 00, 2n1±2(n1)/22^{n-1} \pm 2^{(n-1)/2}, 2n12^{n-1}. Frequencies: A0=1A_0 = 1. A2n12(n1)/2=(2n1)2n1(2n+2(n+1)/2+2)2(2n+2(n+1)/2+1)A_{2^{n-1} - 2^{(n-1)/2}} = \frac{(2^n-1) 2^{n-1} (2^n + 2^{(n+1)/2} + 2)}{2 \cdot (2^n + 2^{(n+1)/2} + 1)}? No, that's complex. Let's use the known frequencies for Gold codes (which have the same distribution). N=2nN = 2^n. Weight w1=N/2N/2w_1 = N/2 - \sqrt{N/2} (for even nn?). No, nn is odd. Weight w1=2n12(n1)/2w_1 = 2^{n-1} - 2^{(n-1)/2}. Frequency f1=(2n1)(2n2+2(n3)/2)f_1 = (2^n - 1) (2^{n-2} + 2^{(n-3)/2}). Wait, let's check n=5n=5. w1=164=12w_1 = 16 - 4 = 12. f1=31(8+2)=310f_1 = 31 (8 + 2) = 310. Weight w2=2n1+2(n1)/2=20w_2 = 2^{n-1} + 2^{(n-1)/2} = 20. Frequency f2=(2n1)(2n22(n3)/2)f_2 = (2^n - 1) (2^{n-2} - 2^{(n-3)/2}). n=5:31(82)=31×6=186n=5: 31 (8 - 2) = 31 \times 6 = 186. Weight w3=2n1=16w_3 = 2^{n-1} = 16. Frequency f3=22n1f1f2=10241310186=527f_3 = 2^{2n} - 1 - f_1 - f_2 = 1024 - 1 - 310 - 186 = 527. Total = 1+310+186+527=10241 + 310 + 186 + 527 = 1024. Correct.

Now, our code C\mathcal{C} adds Tr(u)\text{Tr}(u) and Tr(v)\text{Tr}(v). The codewords are parameterized by (u,v)(u,v). The "core" weight comes from Ccyc={(Tr(ux+vx6))x0}C_{cyc} = \{ (\text{Tr}(ux + vx^6))_{x \neq 0} \}. This core code is exactly the dual BCH code (since xx6x \mapsto x^6 is equivalent to xx3x \mapsto x^3 which generates the same code). So the core weights Wcore(u,v)W_{core}(u,v) take values 0,12,16,200, 12, 16, 20 (for n=5n=5). The full weight is W(u,v)=Tr(u)+Tr(v)+Wcore(u,v)W(u,v) = \text{Tr}(u) + \text{Tr}(v) + W_{core}(u,v). We want the sum of counts for weights d,d+1,d+2d, d+1, d+2. For n=5n=5, d=12d=12. The weights contributing to 12,13,1412, 13, 14 must come from core weight 1212. Why? Core weights are 0,12,16,200, 12, 16, 20. If core is 0: total weight is 0+Tr(u)+Tr(v){0,1,2}0 + \text{Tr}(u) + \text{Tr}(v) \in \{0, 1, 2\}. Too small. If core is 12: total weight {12,13,14}\in \{12, 13, 14\}. These are exactly d,d+1,d+2d, d+1, d+2. If core is 16: total weight {16,17,18}\in \{16, 17, 18\}. Too large. If core is 20: total weight {20,21,22}\in \{20, 21, 22\}. Too large. So Ad+Ad+1+Ad+2A_d + A_{d+1} + A_{d+2} is exactly the number of codewords with core weight 1212. This is equal to f1=(2n1)(2n2+2(n3)/2)f_1 = (2^n - 1) (2^{n-2} + 2^{(n-3)/2}).

Let's verify this hypothesis. Hypothesis: Sn=(2n1)(2n2+2(n3)/2)S_n = (2^n - 1) (2^{n-2} + 2^{(n-3)/2}). For n=5n=5: 31×(8+2)=31031 \times (8 + 2) = 310. Matches simulation (310310). For n=7n=7: 127×(32+4)=127×36=4572127 \times (32 + 4) = 127 \times 36 = 4572. Matches simulation (45724572). For n=9n=9: 511×(128+8)=511×136=69496511 \times (128 + 8) = 511 \times 136 = 69496. Matches simulation (6949669496).

The pattern is confirmed. We need to calculate this value for n=17n=17. Formula: S17=(2171)(215+27)S_{17} = (2^{17} - 1) (2^{15} + 2^{7}). 2171=1310712^{17} - 1 = 131071. 215=327682^{15} = 32768. 27=1282^7 = 128. 215+27=32768+128=328962^{15} + 2^7 = 32768 + 128 = 32896. Result = 131071×32896131071 \times 32896.

Calculation: 131071×32896=(1310721)×32896131071 \times 32896 = (131072 - 1) \times 32896 =131072×3289632896= 131072 \times 32896 - 32896 =217×(215+27)(215+27)= 2^{17} \times (2^{15} + 2^7) - (2^{15} + 2^7) =232+22432896= 2^{32} + 2^{24} - 32896 232=42949672962^{32} = 4294967296 224=167772162^{24} = 16777216 Sum = 43117445124311744512 Subtract 3289632896: 431174451232896=43117116164311744512 - 32896 = 4311711616.

Let's double check the formula derivation. The code C={(Tr(ux+vx6))xF2n}\mathcal{C}' = \{ (\text{Tr}(ux + vx^6))_{x \in \mathbb{F}_{2^n}^*} \} is the dual of the primitive BCH code with designed distance 5 (since xx and x3x^3 are checked). For odd nn, the weight distribution is known (Kasami/Gold). Weights are 0,2n1±2(n1)/2,2n10, 2^{n-1} \pm 2^{(n-1)/2}, 2^{n-1}. Let k=(n1)/2k = (n-1)/2. Weights 2n12k2^{n-1} - 2^k is the minimum non-zero weight. Let wmin=2n12kw_{min} = 2^{n-1} - 2^k. The frequency of this weight is Awmin=(2n1)(2n2+2k1)A_{w_{min}} = (2^n - 1)(2^{n-2} + 2^{k-1}). Wait, my formula used 2(n3)/22^{(n-3)/2} which is 2k12^{k-1}. n=5,k=2n=5, k=2. 2n2+2k1=23+21=102^{n-2} + 2^{k-1} = 2^3 + 2^1 = 10. 31×10=31031 \times 10 = 310. Correct. n=7,k=3n=7, k=3. 25+22=32+4=362^5 + 2^2 = 32 + 4 = 36. 127×36=4572127 \times 36 = 4572. Correct. n=9,k=4n=9, k=4. 27+23=128+8=1362^7 + 2^3 = 128 + 8 = 136. 511×136=69496511 \times 136 = 69496. Correct.

So for n=17n=17: k=(171)/2=8k = (17-1)/2 = 8. Factor 1: 21712^{17} - 1. Factor 2: 215+272^{15} + 2^7. Product: (2171)(215+27)(2^{17}-1)(2^{15} + 2^7). 217=1310722^{17} = 131072. 215=327682^{15} = 32768. 27=1282^7 = 128. Product = 131071×32896131071 \times 32896. 131071×32896=4311711616131071 \times 32896 = 4311711616.

Let's verify the multiplication. 131071 x 32896

131071 * 6 = 786426 131071 * 90 = 11796390 131071 * 800 = 104856800 131071 * 2000 = 262142000 131071 * 30000 = 3932130000 Sum: 786426 11796390 104856800 262142000 3932130000

Summing last digits: 6 Tens: 2+9 = 11 (1) Hundreds: 4+3+8 = 15 + 1 = 16 (6) Thousands: 6+6+6+2 = 20 + 1 = 21 (1) Ten-thousands: 8+9+5+4+3 = 29 + 2 = 31 (1) Hundred-thousands: 7+1+8+1+1 = 18 + 3 = 21 (7) -> Wait.

Let's use Python for the multiplication to be sure. Also, confirm the logic about Ad+Ad+1+Ad+2A_d + A_{d+1} + A_{d+2} being exactly the count of the core weight. The core weights are separated by at least 2(n1)/22^{(n-1)/2}. For n=17n=17, gap is 28=2562^8 = 256. The "jitter" from Tr(u)+Tr(v)\text{Tr}(u) + \text{Tr}(v) is at most +2+2. 12,13,1412, 13, 14 vs 16,17,1816, 17, 18 (gap 4 for n=5n=5). For n=17n=17, d=21628=65280d = 2^{16} - 2^8 = 65280. Next core weight is 216=655362^{16} = 65536. d+2=65282d+2 = 65282. 65282<6553665282 < 65536. So indeed, the weights d,d+1,d+2d, d+1, d+2 can ONLY come from the minimal core weight. And since Tr(u)\text{Tr}(u) and Tr(v)\text{Tr}(v) range over all 4 combinations 00,01,10,1100, 01, 10, 11 for each core codeword? Wait. The core codeword depends on u,vu, v. The count Acore_minA_{core\_min} is the number of pairs (u,v)(u,v) such that Wcore(u,v)=dW_{core}(u,v) = d. For each such pair, the full weight is d+Tr(u)+Tr(v)d + \text{Tr}(u) + \text{Tr}(v). Does Tr(u)+Tr(v)\text{Tr}(u) + \text{Tr}(v) take specific values for these pairs? Or does the set of pairs with minimal weight include all variations? Actually, the formula Acore_minA_{core\_min} counts the number of pairs (u,v)(u,v) giving that core weight. For a fixed core sequence ccorec_{core}, the full codeword is (Tr(u),ccore,Tr(v))( \text{Tr}(u), c_{core}, \text{Tr}(v) ). The weight is w(ccore)+Tr(u)+Tr(v)w(c_{core}) + \text{Tr}(u) + \text{Tr}(v). The sum we want is (u,v):wcore(u,v)=d1\sum_{(u,v) : w_{core}(u,v)=d} 1. This is simply the number of pairs (u,v)(u,v) that produce the minimum core weight. Which is exactly the frequency f1f_1 we calculated.

Is it possible that for a specific (u,v)(u,v) yielding minimal core weight, Tr(u)+Tr(v)\text{Tr}(u)+\text{Tr}(v) is fixed? The core weight depends on u,vu, v. Specifically, it depends on the properties of the polynomial ux+vx6ux + vx^6. If we scale u,vu, v by a factor? No, it's linear. However, the frequency formula derived from the cyclic code properties sums over all valid polynomials. The set of polynomials is {ux+vx6u,vF2n}\{ ux + vx^6 \mid u,v \in \mathbb{F}_{2^n} \}. This is a vector space of dimension 2n2n. The weight distribution counts how many vectors in this space have a certain weight. So yes, the sum Ad+Ad+1+Ad+2A_d + A_{d+1} + A_{d+2} is exactly the number of vectors in the core code with weight dd. Because for any such vector, the extra bits add 0, 1, or 2, mapping it to d,d+1,d+2d, d+1, d+2. And no vector from a higher weight level (min d+256d + 256) can fall into this range. So the answer is indeed f1f_1.

[/THOUGHT] \boxed{4311711616}

Final Model Output
4311711616

Comparative Analysis (P4) (Average across runs)

Avg Time Taken

K-EXAONE-236B-A23B
547.6
Solar-Open-100B
344.0
GPT-5.2 (high)
315.6
Gemini-3-Pro-Preview
296.2
GLM-4.5-Air
128.0
Kanana-2-30B-Thinking
123.3
Kanana-2-30B-Thinking-2601
110.5
Solar-Pro 2
68.4
naver-hyperclovax/HCX-007
23.0
model_d_r1
15.7
axk1
11.4
EXAONE-4.0-32B
6.2

Avg Token Usage

K-EXAONE-236B-A23B
78439.7
Solar-Open-100B
47922.7
Gemini-3-Pro-Preview
27446.3
Kanana-2-30B-Thinking-2601
20770.0
Kanana-2-30B-Thinking
20659.0
GPT-5.2 (high)
17667.3
Solar-Pro 2
14060.3
GLM-4.5-Air
8795.0
EXAONE-4.0-32B
4210.7
axk1
3432.7
naver-hyperclovax/HCX-007
2904.0
model_d_r1
2507.7