Problem Analysis #5

37.46s
5,731 toks
Problem Statement

Let ([0,2],B([0,2]),λ)( [0,2], \mathcal{B}([0,2]), \lambda ) be the Lebesgue measure space.
For each nNn \in \mathbb{N} define

fn(x):=k=1n2123456(x2)k1(1x2)3,x[0,2].f_n(x) := \sum_{k=1}^{n^2} 123456 \left(\frac{x}{2}\right)^{\,k-1} \left( 1 - \frac{x}{2} \right)^{3}, \qquad x \in [0,2].

Compute the value

I:=limn02fn(x)dx.I := \lim_{n\to\infty} \int_0^2 f_n(x)\,dx.
Ground Truth
82304
Execution Trace
Reasoning Process

[PYTHON] from sympy import symbols, integrate, limit, oo

x, n = symbols('x n') C = 123456

Define the term in the sum

sum_{k=1}^{n^2} (x/2)^(k-1)

This is a geometric series with ratio x/2, first term 1, number of terms n^2

Sum = (1 - (x/2)^(n^2)) / (1 - x/2)

f_n(x)

f_n = C * Sum * (1 - x/2)^3

f_n = C * (1 - (x/2)^(n^2)) / (1 - x/2) * (1 - x/2)^3

f_n = C * (1 - (x/2)^(n^2)) * (1 - x/2)^2

We want the limit of the integral of f_n from 0 to 2 as n -> oo

By DCT, this is the integral of the limit of f_n

limit of (x/2)^(n^2) as n->oo is 0 for x in [0, 2)

So limit function f(x) = C * (1 - 0) * (1 - x/2)^2 = C * (1 - x/2)^2

f_limit = C * (1 - x/2)**2 integral_val = integrate(f_limit, (x, 0, 2)) print(f"{integral_val=}") [/PYTHON]

Tool Output
[PYTHON OUTPUT] integral_val=82304 [/PYTHON OUTPUT]
Reasoning Process

The sequence of functions is given by [ f_n(x) = 123456 \left(1 - \frac{x}{2}\right)^3 \sum_{k=1}^{n^2} \left(\frac{x}{2}\right)^{k-1}. ] Let r=x2r = \frac{x}{2}. For x[0,2)x \in [0, 2), we have 0r<10 \le r < 1. The sum is a geometric series: [ \sum_{k=1}^{n^2} r^{k-1} = \frac{1 - r^{n^2}}{1 - r}. ] Thus, for x[0,2)x \in [0, 2), [ f_n(x) = 123456 (1 - r)^3 \frac{1 - r^{n^2}}{1 - r} = 123456 (1 - r)^2 (1 - r^{n^2}). ] As nn \to \infty, rn20r^{n^2} \to 0 for r[0,1)r \in [0, 1). Therefore, the pointwise limit is [ f(x) = \lim_{n\to\infty} f_n(x) = 123456 \left(1 - \frac{x}{2}\right)^2. ] Since fn(x)123456(1x/2)2|f_n(x)| \le 123456 (1 - x/2)^2 on [0,2][0, 2], and this dominating function is integrable, the Dominated Convergence Theorem applies: [ I = \int_0^2 f(x) , dx = \int_0^2 123456 \left(1 - \frac{x}{2}\right)^2 , dx. ] Let u=1x2u = 1 - \frac{x}{2}, so dx=2dudx = -2 \, du. The limits change from [0,2][0, 2] to [1,0][1, 0]. [ I = 123456 \int_1^0 u^2 (-2) , du = 2 \cdot 123456 \int_0^1 u^2 , du = 246912 \left[ \frac{u^3}{3} \right]_0^1 = \frac{246912}{3} = 82304. ]

\boxed{82304}

Final Model Output
82304

Comparative Analysis (P5) (Average across runs)

Avg Time Taken

Solar-Open-100B
550.5
Gemini-3-Pro-Preview
42.3
Kanana-2-30B-Thinking
38.5
naver-hyperclovax/HCX-007
34.1
GLM-4.5-Air
31.7
K-EXAONE-236B-A23B
29.5
Kanana-2-30B-Thinking-2601
21.1
Solar-Pro 2
19.7
model_d_r1
18.6
GPT-5.2 (high)
13.1
axk1
7.6
EXAONE-4.0-32B
6.5

Avg Token Usage

Solar-Open-100B
17025.7
Kanana-2-30B-Thinking
9881.7
Kanana-2-30B-Thinking-2601
6458.3
GLM-4.5-Air
5912.0
Gemini-3-Pro-Preview
5738.7
Solar-Pro 2
5609.7
naver-hyperclovax/HCX-007
4853.7
K-EXAONE-236B-A23B
4492.3
EXAONE-4.0-32B
4188.3
model_d_r1
3289.7
GPT-5.2 (high)
3264.0
axk1
2930.0