Problem Analysis #7

29.80s
4,979 toks
Problem Statement

A student tosses a fair coin 2020 times and lets NN be the number of heads observed. Thus

NBinomial(20,1/2).N \sim \mathrm{Binomial}(20,1/2).

For a complicated risk measure, the student needs the value of the fourth moment E[N4]\mathbb{E}[N^4]. Define

K:=1000E[N4].K := 1000 \cdot \mathbb{E}[N^4].

Compute the exact integer value of KK.

Ground Truth
13072500
Execution Trace
Reasoning Process

[PYTHON] import math

def compute_k(): n = 20 # Calculate the sum S = sum(k^4 * binom(n, k)) S = 0 for k in range(n + 1): term = (k**4) * math.comb(n, k) S += term

# E[N^4] = S / 2^20
# K = 1000 * E[N^4] = 1000 * S / 2^20

# Let's compute K using floating point first to check
expected_value_n4 = S / (2**20)
K = 1000 * expected_value_n4

print(f"{S=}")
print(f"{expected_value_n4=}")
print(f"{K=}")

# Check if it's an integer
if K.is_integer():
    print(f"Integer K: {int(K)}")
else:
    print("K is not an integer directly?")

compute_k() [/PYTHON]

Tool Output
[PYTHON OUTPUT] S=13707509760 expected_value_n4=13072.5 K=13072500.0 Integer K: 13072500 [/PYTHON OUTPUT]
Reasoning Process

The random variable NN follows a binomial distribution NBinomial(n,p)N \sim \mathrm{Binomial}(n, p) with n=20n=20 and p=1/2p=1/2. The fourth moment of a binomial distribution can be expressed using Stirling numbers of the second kind, S(k,j)S(k, j), as: [ \mathbb{E}[N^k] = \sum_{j=0}^k S(k, j) (n)_j p^j ] where (n)j=n(n1)(nj+1)(n)_j = n(n-1)\cdots(n-j+1) is the falling factorial. For k=4k=4, the Stirling numbers are S(4,1)=1,S(4,2)=7,S(4,3)=6,S(4,4)=1S(4,1)=1, S(4,2)=7, S(4,3)=6, S(4,4)=1. Thus, [ \mathbb{E}[N^4] = 1 \cdot (n)_1 p + 7 \cdot (n)_2 p^2 + 6 \cdot (n)_3 p^3 + 1 \cdot (n)_4 p^4 ] Substituting n=20n=20 and p=1/2p=1/2: \begin{align*} (n)_1 p &= 20 \cdot 0.5 = 10 \ (n)_2 p^2 &= 20 \cdot 19 \cdot 0.25 = 95 \ (n)_3 p^3 &= 20 \cdot 19 \cdot 18 \cdot 0.125 = 855 \ (n)_4 p^4 &= 20 \cdot 19 \cdot 18 \cdot 17 \cdot 0.0625 = 7267.5 \end{align*} Now summing these terms weighted by Stirling numbers: \begin{align*} \mathbb{E}[N^4] &= 1(10) + 7(95) + 6(855) + 1(7267.5) \ &= 10 + 665 + 5130 + 7267.5 \ &= 13072.5 \end{align*} Finally, we compute KK: [ K = 1000 \cdot \mathbb{E}[N^4] = 1000 \cdot 13072.5 = 13072500 ] The Python code confirmed this result directly by summing k=020k4(20k)(0.5)20\sum_{k=0}^{20} k^4 \binom{20}{k} (0.5)^{20}.

\boxed{13072500}

Final Model Output
13072500

Comparative Analysis (P7) (Average across runs)

Avg Time Taken

Solar-Open-100B
210.9
Solar-Pro 2
60.8
Kanana-2-30B-Thinking
52.2
naver-hyperclovax/HCX-007
36.0
Kanana-2-30B-Thinking-2601
33.4
Gemini-3-Pro-Preview
27.5
model_d_r1
22.5
GLM-4.5-Air
17.0
K-EXAONE-236B-A23B
13.9
GPT-5.2 (high)
8.4
axk1
5.8
EXAONE-4.0-32B
3.2

Avg Token Usage

Solar-Pro 2
12433.0
Kanana-2-30B-Thinking
10068.0
Kanana-2-30B-Thinking-2601
8240.0
naver-hyperclovax/HCX-007
4776.3
Gemini-3-Pro-Preview
4468.3
EXAONE-4.0-32B
4113.3
model_d_r1
4096.0
Solar-Open-100B
3704.0
GLM-4.5-Air
2856.7
K-EXAONE-236B-A23B
2745.3
GPT-5.2 (high)
2738.3
axk1
2560.7