Problem Analysis #2

16.36s
4,076 toks
Problem Statement

Evaluate the integral

I=P(x)eix(x3i)8dx,I = \int_{-\infty}^{\infty} \frac{P(x)\, e^{ix}}{(x - 3i)^{8}}\,dx,

where

P(x)=x714ix6+(8560i)x5(240+210i)x4+(420840i)x3(560+1680i)x2+(13442688i)x+3840.P(x) = x^{7} - 14ix^{6} + (85 - 60i)x^{5} - (240 + 210i)x^{4} + (420 - 840i)x^{3} - (560 + 1680i)x^{2} + (1344 - 2688i)x + 3840.

If the value of the integral is I=a+biI = a + bi, ii is the imaginary unit, compute

10a+b.\lfloor 10a \rfloor + \lfloor b \rfloor.
Ground Truth
7
Execution Trace
Reasoning Process

[THOUGHT] I need to evaluate the integral I=P(x)eix(x3i)8dxI = \int_{-\infty}^{\infty} \frac{P(x) e^{ix}}{(x - 3i)^8} dx

where P(x)P(x) is a degree 7 polynomial.

Since the integrand has a pole at x=3ix = 3i (which is in the upper half-plane, since Im(3i)=3>0\text{Im}(3i) = 3 > 0), and we have eixe^{ix} in the numerator, I'll use contour integration.

For eixe^{ix} with xx real, when we close the contour in the upper half-plane (since eize^{iz} decays as Im(z)+\text{Im}(z) \to +\infty), the integral over the semicircular arc vanishes as the radius goes to infinity (by Jordan's lemma, provided the rest of the integrand decays appropriately).

The pole at z=3iz = 3i is of order 8, so by the residue theorem: I=2πiResz=3i[P(z)eiz(z3i)8]I = 2\pi i \cdot \text{Res}_{z=3i} \left[ \frac{P(z) e^{iz}}{(z - 3i)^8} \right]

For a pole of order 8, the residue is: Resz=3i=17!limz3id7dz7[P(z)eiz]\text{Res}_{z=3i} = \frac{1}{7!} \lim_{z \to 3i} \frac{d^7}{dz^7} \left[ P(z) e^{iz} \right]

Let me compute this using Python. [/THOUGHT] [PYTHON] import sympy as sp from sympy import I, exp, factorial, pi, diff, simplify, re, im, floor

z = sp.Symbol('z')

Define P(z)

P = (z7 - 14Iz6 + (85 - 60*I)z**5 - (240 + 210I)z**4 + (420 - 840I)z**3 - (560 + 1680I)z**2 + (1344 - 2688I)*z + 3840)

The function whose 7th derivative we need

f = P * exp(I*z)

Compute the 7th derivative

f_7th = diff(f, z, 7)

Evaluate at z = 3i

f_7th_at_3i = f_7th.subs(z, 3*I)

Simplify

f_7th_at_3i = simplify(f_7th_at_3i)

print("7th derivative at z=3i:", f_7th_at_3i)

Residue

residue = f_7th_at_3i / factorial(7) residue = simplify(residue) print("Residue:", residue)

Integral I = 2pii * residue

I_val = 2 * pi * I * residue I_val = simplify(I_val) print("I =", I_val)

Get real and imaginary parts

a = re(I_val) b = im(I_val) print("a =", a) print("b =", b)

Compute floor(10a) + floor(b)

result = floor(10*a) + floor(b) print("floor(10a) + floor(b) =", result) [/PYTHON]

Tool Output
[PYTHON OUTPUT] 7th derivative at z=3i: 6*(5479 - 1608*I)*exp(-3) Residue: (5479 - 1608*I)*exp(-3)/840 I = I*pi*(5479 - 1608*I)*exp(-3)/420 a = 134*pi*exp(-3)/35 b = 5479*pi*exp(-3)/420 floor(10a) + floor(b) = 7 [/PYTHON OUTPUT]
Reasoning Process

[THOUGHT] The calculation shows that:

  • a=134πe335a = \frac{134\pi e^{-3}}{35}
  • b=5479πe3420b = \frac{5479\pi e^{-3}}{420}

And the final result is: 10a+b=7\lfloor 10a \rfloor + \lfloor b \rfloor = 7 [/THOUGHT]

\boxed{7}

Final Model Output
7

Comparative Analysis (P2) (Average across runs)

Avg Time Taken

Qwen3-30B-A3B-2507
7431.3
Deepseek-R1-distill-Qwen-32B (high)
859.1
Gemini-3-Pro-Preview
199.4
Deepseek-V3.2
116.7
GPT-oss-20B (high)
86.7
Gemma-3-27B
83.2
Solar-Pro-2 (31B)(high)
71.2
HCX-007(high)
61.9
A.X-4.0 (72B)
42.6
Llama-VARCO-8B-Instruct
35.1
Grok-4.1-fast
22.6
Claude-Opus-4.5
15.8
GPT-5.1 (high)
13.1
EXAONE-4.0.1-32B (high)
5.4

Avg Token Usage

Qwen3-30B-A3B-2507
24109.7
GPT-oss-20B (high)
19053.3
Gemini-3-Pro-Preview
17645.0
Deepseek-R1-distill-Qwen-32B (high)
11660.7
HCX-007(high)
11315.0
Solar-Pro-2 (31B)(high)
10817.0
Deepseek-V3.2
5996.0
A.X-4.0 (72B)
5881.3
Grok-4.1-fast
5630.3
Llama-VARCO-8B-Instruct
5237.0
Claude-Opus-4.5
4038.7
EXAONE-4.0.1-32B (high)
3954.7
Gemma-3-27B
3894.7
GPT-5.1 (high)
3378.0